• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Center for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Center Activities
    • Vision, Mission and Goals
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Complex Networks
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
    • Trustworthy and Explainable AI
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact
  • Login

Machine Learning Laboratory

Hyperspectral Image Analysis Using Machine Learning and Adaptive Data-Driven Filtering

17.02.2020

As a non-contact and non-invasive technique, hyperspectral imaging enables the collection of highly informative spectral (at different wavelengths) and spatial data on the observed sample. The collected spectra reflect the chemical composition and spatial morphology of the sample. The technique is successfully applied in the food industry, for industrial classification, and in medicine for the […]

Automatic Music Transcription for Traditional Woodwind Instruments Sopele

01.12.2019

Automatic Music Transcription for Traditional Woodwind Instruments Sopele

Sopela is a traditional hand-made woodwind instrument, commonly played in pair, characteristic to the Istrian peninsula in western Croatia. Its piercing sound, accompanied by two-part singing in the hexatonic Istrian scale, is registered in the UNESCO Representative List of the Intangible Cultural Heritage of Humanity. This paper presents an insight study of automatic music transcription […]

Invited talk at the Institute of Informatics in Szeged, Hungary

28.11.2019

On November 28, 2019, Ivan Štajduhar gave a talk titled “Machine Learning for Medical Imaging” at the Institute of Informatics in Szeged, Hungary, presenting the current research activities of the group.

Invited talk at SSIP 2019

22.07.2019

Ivan Štajduhar gave a lecture titled “Everything you never wanted to know about machine learning, but were forced to find out” at the 2019 Summer School on Image Processing (SSIP) in Timisoara, Romania, on July 10, 2019. https://www.info.uvt.ro/ssip2019/

Local-Entropy Based Approach for X-Ray Image Segmentation and Fracture Detection

28.03.2019

Local-Entropy Based Approach for X-Ray Image Segmentation and Fracture Detection

The paper proposes a segmentation and classification technique for fracture detection in X-ray images. This novel rotation-invariant method introduces the concept of local entropy for de-noising and removing tissue from the analysed X-ray images, followed by an improved procedure for image segmentation and the detection of regions of interest. The proposed local Shannon entropy was […]

Development of machine-learning-based techniques for illness and injury detection in medical images

01.03.2019

Clinical decision-support systems are often built by manually gathering, formalising and implementing specialist knowledge. Therefore, they are limited by existing human knowledge concerning modelling clinical conditions, diagnosis and therapy, and can be inaccurate because of variations and complexity inherent to medical data. In order to circumvent these limitations, following an obvious growth of publicly available […]

Computer-Aided Digital Analysis And Classification of Signals

01.01.2019

Computer-Aided Digital Analysis And Classification of Signals

Various natural phenomena are described by stochastic signals, the analysis of which requires utilizing advanced, computationally demanding algorithms (such as simultaneous processing of signals in time and frequency domain using quadratic time-frequency distributions). Besides being stochastic, these signals are usually non-stationary and multi-componential. Hence, to process them, it is necessary to develop adaptive algorithms for […]

Adaptive State Estimator With Intersection of Confidence Intervals Based Preprocessing

26.11.2018

The paper presents an effective solution for improving power system state estimation performance by applying the intersection of confidence intervals (ICI) algorithm, a state-of-the-art adaptive signal processing technique used in signal denoising. Since many power utilities worldwide still run state estimators based on the weighed least squares (WLS) algorithm using supervisory control and data acquisition […]

A Network for Gravitational Waves, Geophysics and Machine Learning

18.10.2018

The breakthrough discovery of gravitational waves on September 14, 2015 was made possible through synergy of techniques drawing from expertise in physics, mathematics, information science and computing.  At present, there is a rapidly growing interest in Machine Learning (ML), Deep Learning (DL), classification problems, data mining and visualization and, in general, in the development of […]

Image Processing, Information Engineering & Interdisciplinary Knowledge Exchange

01.10.2018

CEEPUS network “Image Processing, Information Engineering & Interdisciplinary Knowledge Exchange”, CIII-AT-0042, is dedicated to connecting researchers in the field of computer science and signal processing with medical experts. RITEH is a partner in the project from 2018.

  • « Go to Previous Page
  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Go to page 4
  • Go to Next Page »

Primary Sidebar

Latest Projects

Advanced Data Analysis Using Digital Signal Processing and Machine Learning Techniques

Compound Flooding in Coastal Rivers in Present and Future Climate

Data Processing on Graphs

North Adriatic Hydrogen Valley

Data Governance and Intellectual Property Governance in Common European Data Spaces – DGIP-CEDS

Latest Research Papers

Digital Twin-Driven Federated Learning and Reinforcement Learning-Based Offloading for Energy-Efficient Distributed Intelligence in IoT Networks

Forecasting the Trajectory of Personal Watercrafts Using Models Based on Recurrent Neural Networks

A System for Real-Time Detection of Abandoned Luggage

Enhancing Biophysical Muscle Fatigue Model in the Dynamic Context of Soccer

Pravna tehnologija (Legal Tech) i njezina (ne)prikladnost za zamjenu pravne struke

Latest News

Invited lecture: “About the first GPS receiver on the Moon, and the other NASA space PNT stories” by James J. Miller (NASA)

Agreement on collaboration between the Faculty of Engineering in Rijeka and the Shanghai Artificial Intelligence Research Institute

Arian Skoki defended his doctoral thesis “Data-Driven Assessment of Player Performance and Recovery in Soccer”

Anna Maria Mihel defended her PhD dissertation topic

Prof. dr. sc. Renato Filjar participated at the meeting of the 31st National Space-Based Positioning, Navigation and Timing US Advisory Board

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design