• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Center for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Center Activities
    • Vision, Mission and Goals
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Complex Networks
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
    • Trustworthy and Explainable AI
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact
  • Login

XDT-FMARL: An Explainable Federated Multi-Agent Reinforcement Learning Framework for Energy-Efficient IoT Task Offloading

02.12.2025

Effectively managing the vast data generated by sensor networks has become crucial with the rapid spread of IoT devices under strict resource constraints. This research introduces a framework that integrates explainable artificial intelligence (XAI), digital twins (DT), federated learning (FL), and multi-agent reinforcement learning (MARL) to optimise energy use and task distribution in distributed IoT environments. The proposed method, called explainable digital twin with federated multi-agent RL (XDT-FMARL), balances computational load through federated training and intelligent offloading between constrained IoT devices and edge servers. DT predicts short-term operational metrics such as battery state, processor load, and network delay using linear regression and moving averages. Guided by XAI, MARL agents select adaptive offloading or local processing strategies, enhancing interpretability and trust. Experiments show that XDT-FMARL maintains device batteries above 80% and applies responsive offloading under high load, while single-agent models default to uniform local processing with limited adaptability.

Authors:
Klea Elmazi, Donald Elmazi, Jonatan Lerga
Journal:
International Journal of Web and Grid Services
Publishing date:
02.12.2025
View original article

Primary Sidebar

Latest Projects

Advanced Data Analysis Using Digital Signal Processing and Machine Learning Techniques

Compound Flooding in Coastal Rivers in Present and Future Climate

Data Processing on Graphs

North Adriatic Hydrogen Valley

Data Governance and Intellectual Property Governance in Common European Data Spaces – DGIP-CEDS

Latest Research Papers

XDT-FMARL: An Explainable Federated Multi-Agent Reinforcement Learning Framework for Energy-Efficient IoT Task Offloading

Proactive Context Aware Task Offloading in Digital Twin Driven Federated IoT Systems with Large Language Models

Pretraining and evaluation of BERT models for climate research

Digital Twin-Driven Federated Learning and Reinforcement Learning-Based Offloading for Energy-Efficient Distributed Intelligence in IoT Networks

Forecasting the Trajectory of Personal Watercrafts Using Models Based on Recurrent Neural Networks

Latest News

Pretraining and evaluation of BERT models for climate research

Invited lecture: “About the first GPS receiver on the Moon, and the other NASA space PNT stories” by James J. Miller (NASA)

Agreement on collaboration between the Faculty of Engineering in Rijeka and the Shanghai Artificial Intelligence Research Institute

Arian Skoki defended his doctoral thesis “Data-Driven Assessment of Player Performance and Recovery in Soccer”

Anna Maria Mihel defended her PhD dissertation topic

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design