• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Center for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Center Activities
    • Vision, Mission and Goals
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Complex Networks
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
    • Trustworthy and Explainable AI
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact
  • Login

XAOM: A method for automatic alignment and orientation of radiographs for computer-aided medical diagnosis

16.03.2021

Background and objectives: Computer-aided diagnosis relies on machine learning algorithms that require filtered and preprocessed data as the input. Aligning the image in the desired direction is an additional manual step in post- processing, commonly overlooked due to workload issues. Several state-of-the-art approaches for fracture detection and disease-struck region segmentation benefit from correctly oriented images, thus requiring such preprocessing of X-ray images. Furthermore, it is desirable to have archived studies in a standardized format. Radiograph hanging protocols also differ from case to case, which means that images are not always aligned and oriented correctly. As a solution, the paper proposes XAOM, an X-ray Alignment and Orientation Method for images from 21 different body regions.

Methods: Typically, other methods are crafted for this purpose to suit a specific body region and form of usage. In contrast, the method proposed in this paper is comprehensive and easily tuned to align and orient X- ray images of any body region. XAOM consists of two stages. For the first stage of the method, aligning X-ray images, we experimented with the following approaches: Hough transform, Fast line detection algorithm, and Principal Component Analysis method. For the second stage, we have experimented with the adaptations of several well known convolutional neural network topologies for correctly predicting image orientation: LeNet5, AlexNet, VGG16, VGG19, and ResNet50.

Results: In the first stage, the PCA-based approach performed best. The average difference between the angle detected by the algorithm and the angle marked by the experts on the test set containing 200 pediatric X-ray images was 1.65°, while the median value was 0.11°. In the second stage, the VGG16-based network topology achieved the best accuracy of 0.993 on a test set containing 4, 221 images. Conclusion XAOM is highly accurate at aligning and orienting pediatric X-ray images of 21 common body regions according to a set standard. The proposed method is also robust and can be easily adjusted to the different alignment and rotation criteria.

Availability: The Python source code of the best performing implementation of XAOM is publicly available at https://github.com/fhrzic/XAOM.

Authors:
Franko Hržić, Sebastian Tschauner, Erich Sorantin, Ivan Štajduhar
Journal:
Computers in biology and medicine
Publishing date:
01.05.2021
View original article

Primary Sidebar

Latest Projects

Advanced Data Analysis Using Digital Signal Processing and Machine Learning Techniques

Compound Flooding in Coastal Rivers in Present and Future Climate

Data Processing on Graphs

North Adriatic Hydrogen Valley

Data Governance and Intellectual Property Governance in Common European Data Spaces – DGIP-CEDS

Latest Research Papers

Forecasting the Trajectory of Personal Watercrafts Using Models Based on Recurrent Neural Networks

A System for Real-Time Detection of Abandoned Luggage

Enhancing Biophysical Muscle Fatigue Model in the Dynamic Context of Soccer

Pravna tehnologija (Legal Tech) i njezina (ne)prikladnost za zamjenu pravne struke

Regression-Based Machine Learning Approaches for Estimating Discharge from Water Levels in Microtidal Rivers

Latest News

Arian Skoki defended his doctoral thesis “Data-Driven Assessment of Player Performance and Recovery in Soccer”

Anna Maria Mihel defended her PhD dissertation topic

Prof. dr. sc. Renato Filjar participated at the meeting of the 31st National Space-Based Positioning, Navigation and Timing US Advisory Board

Presentation of the NPOO project Peoplet

Ana Vranković Lacković defended her doctoral thesis

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design