• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Centre for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Vision, Mission and Goals
    • Center Activities
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact

Structural Analysis of Factual, Conceptual, Procedural, and Metacognitive Knowledge in a Multidimensional Knowledge Network

09.03.2020

Discovering the most suitable network structure of the learning domain represents one of the main challenges of knowledge delivery and acquisition. We propose a multidimensional knowledge network (MKN) consisting of three components: multilayer network and its two projections. Each network layer constitutes factual, conceptual, procedural, or metacognitive knowledge within the domain of databases as a standard course of computer science study. In the MKN layer, nodes are concepts or knowledge units and the edges are weighted with regard to Bloom’s cognitive learning level. The projected network layers are contrasted with a monolayer network by comparing characterizations of the centrality measures: degree centrality, closeness centrality, betweenness centrality, and eccentricity. The study revealed indications of how concepts, supported with the higher number of previously introduced concepts, have a dominant role in knowledge acquisition, from a view of knowledge structure and content. The analysis of communities, assortativity coefficient, and overlap between MKN layers contributes to better structuring of knowledge. MKN enables systematic insights into the efficiency of knowledge integration across metacognitive layers, as well as the detection of crucial cognitive concepts that reduce/increase the cognitive load during learning.

Authors:
Đurđica Vukić, Sanda Martinčić-Ipšić, Ana Meštrović
Journal:
Complexity
Publishing date:
09.03.2020
View original article

Primary Sidebar

Latest Projects

Machine Learning for Knowledge Transfer in Medical Radiology

Estimating River Discharges in Highly Stratified Estuaries

Multilayer Framework for the Information Spreading Characterization in Social Media during the COVID-19 Crisis (InfoCoV)

European Network for assuring food integrity using non-destructive spectral sensors

National Competence Centres in the Framework of EuroHPC (EUROCC)

Latest Research Papers

Rule-Based EEG Classifier Utilizing Local Entropy of Time–Frequency Distributions

Rethinking Effects of Innovation in Competition In The Era of New Digital Technologies

A Comparison of Approaches for Measuring the Semantic Similarity of Short Texts Based on Word Embeddings

Indoor Localization Based on Infrared Angle of Arrival Sensor Network

Gravitational-Wave Burst Signals Denoising Based on the Adaptive Modification of Intersection of Confidence Intervals Rule

Latest News

U Rijeci radi Centar za umjetnu inteligenciju, već su u prvoj godini rada povukli šest milijuna u 14 projekata

UNIRI Excellence Awards in Science

Talk on conference “Exploring Digital Legal Landscapes”

ICAIH 2020 conference presentation

International conference “Exploring Digital Legal Landscapes” – 11th of December, 2020

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design