• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Center for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Vision, Mission and Goals
    • Center Activities
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Complex Networks
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact

Semi-automated detection of anterior cruciate ligament injury from MRI

01.03.2017

Background and objectives: A radiologist’s work in detecting various injuries or pathologies from radiological scans can be tiresome, time consuming and prone to errors. The field of computer-aided diagnosis aims to reduce these factors by introducing a level of automation in the process. In this paper, we deal with the problem of detecting the presence of anterior cruciate ligament (ACL) injury in a human knee. We examine the possibility of aiding the diagnosis process by building a decision- support model for detecting the presence of milder ACL injuries (not requiring operative treatment) and complete ACL ruptures (requiring operative treatment) from sagittal plane magnetic resonance (MR) volumes of human knees. Methods: Histogram of oriented gradient (HOG) descriptors and gist descriptors are extracted from manually selected rectangular regions of interest enveloping the wider cruciate ligament area. Performance of two machine-learning models is explored, coupled with both feature extraction methods: support vector machine (SVM) and random forests model. Model generalisation properties were determined by performing multiple iterations of stratified 10-fold cross validation whilst observing the area under the curve (AUC) score. Results: Sagittal plane knee joint MR data was retrospectively gathered at the Clinical Hospital Centre Rijeka, Croatia, from 2007 until 2014. Type of ACL injury was established in a double-blind fashion by comparing the retrospectively set diagnosis against the prospective opinion of another radiologist. After clean up, the resulting dataset consisted of 917 usable labelled exam sequences of left or right knees. Experimental results suggest that a linear-kernel SVM learned from HOG descriptors has the best generalisation properties among the experimental models compared, having an area under the curve of 0.894 for the injury-detection problem and 0.943 for the complete-rupture-detection problem. Conclusions: Although the problem of performing semi-automated ACL-injury diagnosis by observing knee-joint MR volumes alone is a difficult one, experimental results suggest potential clinical application of computer- aided decision making, both for detecting milder injuries and detecting complete ruptures.

The dataset used in this research is publicly available: http://www.riteh.uniri.hr/~istajduh/projects/kneeMRI/

Authors:
Ivan Štajduhar, Mihaela Mamula, Damir Miletić, Gozde Unal
Journal:
Computer Methods and Programs in Biomedicine
Publishing date:
01.03.2017
View original article

Primary Sidebar

Latest Projects

ABsistemDCiCloud

Machine Learning for Knowledge Transfer in Medical Radiology

Estimating River Discharges in Highly Stratified Estuaries

Multilayer Framework for the Information Spreading Characterization in Social Media during the COVID-19 Crisis (InfoCoV)

European Network for assuring food integrity using non-destructive spectral sensors

Latest Research Papers

Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning

Entropy-Based Concentration and Instantaneous Frequency of TFDs from Cohen’s, Affine, and Reassigned Classes

Coupled encoding methods for antimicrobial peptide prediction: How sensitive is a highly accurate model?

The Choice of Time–Frequency Representations of Non-Stationary Signals Affects Machine Learning Model Accuracy: A Case Study on Earthquake Detection from LEN-DB Data

Improved Parametrized Multiple Window Spectrogram with Application in Ship Navigation Systems

Latest News

Assoc. prof. Jonatan Lerga received the Croatian Academy of Sciences and Arts award

Dr. Sc. Nikola Lopac successfully defended his doctoral dissertation

Presentation at the conference “Digital Innovation and Technology for People”

Assoc. prof. dr. sc. Jonatan Lerga presented AIRI Center at the IEEE Rijeka : Computer Society Congress 2021

Prof. dr. sc. Ana Mestrovic participated at the Panel on perspectives and real-life applications of AI organized by IEEE Technology and Engineering Management Society

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design