• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Center for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Vision, Mission and Goals
    • Center Activities
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Complex Networks
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact

Predicting Seagoing Ship Energy Efficiency from the Operational Data

19.04.2021

This paper presents the application of machine learning (ML) methods in setting up a model with the aim of predicting the energy efficiency of seagoing ships in the case of a vessel for the transport of liquefied petroleum gas (LPG). The ML algorithm is learned from shipboard automation system measurement data, noon logbook reports, and related meteorological and oceanographic data. The model is tested with generalized linear model (GLM) regression, multilayer preceptor (MLP), support vector machine (SVM), and random forest (RF). Upon verification of modeling framework and analyzing the results to improve the prediction accuracy, the best numeric prediction algorithm is selected based on standard evaluation metrics for regression, i.e., primarily root mean square error (RMSE) and relative absolute error (RAE). Experimental results show that, by taking an adequate combination and processing of relevant measurement data, RF exhibits the lowest RMSE of 17.2632 and RAE 2.304%. Furthermore, this paper elaborates the selection of measurement data, the analysis of input parameters, and their significance in building the prediction model and selection of suitable output variables by the ship’s energy efficiency management plan (SEEMP). In addition, discretization was introduced to allow the end user to interpret the prediction results, placing them in the context of the actual ship operations. The results presented in this research can assist in setting up a decision support system whenever energy consumption savings in a marine transport are at stake.

Authors:
Aleksandar Vorkapić, Radoslav Radonja, Sanda Martinčić-Ipšić.
Journal:
Sensors
Publishing date:
17.04.2021
View original article

Primary Sidebar

Latest Projects

ABsistemDCiCloud

Machine Learning for Knowledge Transfer in Medical Radiology

Estimating River Discharges in Highly Stratified Estuaries

Multilayer Framework for the Information Spreading Characterization in Social Media during the COVID-19 Crisis (InfoCoV)

European Network for assuring food integrity using non-destructive spectral sensors

Latest Research Papers

Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning

Entropy-Based Concentration and Instantaneous Frequency of TFDs from Cohen’s, Affine, and Reassigned Classes

Coupled encoding methods for antimicrobial peptide prediction: How sensitive is a highly accurate model?

The Choice of Time–Frequency Representations of Non-Stationary Signals Affects Machine Learning Model Accuracy: A Case Study on Earthquake Detection from LEN-DB Data

Improved Parametrized Multiple Window Spectrogram with Application in Ship Navigation Systems

Latest News

Assoc. prof. Jonatan Lerga received the Croatian Academy of Sciences and Arts award

Dr. Sc. Nikola Lopac successfully defended his doctoral dissertation

Presentation at the conference “Digital Innovation and Technology for People”

Assoc. prof. dr. sc. Jonatan Lerga presented AIRI Center at the IEEE Rijeka : Computer Society Congress 2021

Prof. dr. sc. Ana Mestrovic participated at the Panel on perspectives and real-life applications of AI organized by IEEE Technology and Engineering Management Society

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design