• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Center for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Center Activities
    • Vision, Mission and Goals
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Complex Networks
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact

Modeling Uncertainty in Fracture Age Estimation from Pediatric Wrist Radiographs

13.12.2021

In clinical practice, fracture age estimation is commonly required, particularly in children with suspected non-accidental injuries. It is usually done by radiologically examining the injured body part and analyzing several indicators of fracture healing such as osteopenia, periosteal reaction, and fracture gap width. However, age-related changes in healing timeframes, inter-individual variabilities in bone density, and significant intra- and inter-operator subjectivity all limit the validity of these radiological clues. To address these issues, for the first time, we suggest an automated neural network-based system for determining the age of a pediatric wrist fracture. In this study, we propose and evaluate a deep learning approach for automatically estimating fracture age. Our dataset included 3570 medical cases with a skewed distribution toward initial consultations. Each medical case includes a lateral and anteroposterior projection of a wrist fracture, as well as patients’ age, and gender. We propose a neural network-based system with Monte-Carlo dropout-based uncertainty estimation to address dataset skewness. Furthermore, this research examines how each component of the system contributes to the final forecast and provides an interpretation of different scenarios in system predictions in terms of their uncertainty. The examination of the proposed systems’ components showed that the feature-fusion of all available data is necessary to obtain good results. Also, proposing uncertainty estimation in the system increased accuracy and F1-score to a final 0.906±0.011 on a given task.

Authors:
Hržić, Franko ; Janisch, Michael ; Štajduhar, Ivan ; Lerga, Jonatan ; Sorantin, Erich ; Tschauner, Sebastian
Journal:
Mathematics
Publishing date:
13.12.2021
View original article

Primary Sidebar

Latest Projects

Transversal Skills in Applied Artificial Intelligence (TSAAI)

INNO2MARE – Strengthening the capacity for excellence of Slovenian and Croatian innovation ecosystems to support the digital and green transitions of maritime regions

European Digital Innovation Hub Adria Croatia

ABsistemDCiCloud

Machine Learning for Knowledge Transfer in Medical Radiology

Latest Research Papers

Fracture Recognition in Paediatric Wrist Radiographs: An Object Detection Approach

Rapid extraction of skin physiological parameters from hyperspectral images using machine learning

Extended Energy-Expenditure Model in Soccer: Evaluating Player Performance in the Context of the Game

A Review of Data-Driven Approaches and Techniques for Fault Detection and Diagnosis in HVAC Systems

Block-Adaptive Rényi Entropy-Based Denoising for Non-Stationary Signals

Latest News

Recognition of the Faculty of Information and Digital Technologies

Assoc. prof. Jonatan Lerga received the Croatian Academy of Sciences and Arts award

Dr. Sc. Nikola Lopac successfully defended his doctoral dissertation

Presentation at the conference “Digital Innovation and Technology for People”

Assoc. prof. dr. sc. Jonatan Lerga presented AIRI Center at the IEEE Rijeka : Computer Society Congress 2021

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design