• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Center for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Vision, Mission and Goals
    • Center Activities
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Complex Networks
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact

Infoveillance of the Croatian Online Media during the COVID-19 Pandemic: a One-Year Longitudinal NLP Study

22.11.2021

Background: Online media plays an important role in public health emergencies and serves as a communication platform. Infoveillance of online media during the COVID-19 pandemic is an important step toward a better understanding of crisis communication.

Objective: The goal of this study is to perform a longitudinal analysis of the COVID-19 related content based on natural language processing methods.

Methods: We collected a dataset of news articles published by Croatian online media during the first 13 months of the pandemic. Firstly, we test the correlations between the number of articles and the number of new daily COVID-19 cases. Secondly, we analyze the content by extracting the most frequent terms and apply the Jaccard similarity. Next, we compare the occurrence of the pandemic-related terms during the two waves of the pandemic. Finally, we apply named entity recognition to extract the most frequent entities and track the dynamics of changes during the observed period.

Results: The results show there is no significant correlation between the number of articles and the number of new daily COVID-19 cases. Furthermore, there are high overlaps in the terminology used in all articles published during the pandemic with a slight shift in the pandemic-related terms between the first and the second wave. Finally, the findings indicate that the most influential entities have lower overlaps for the identified persons and higher overlaps for locations and institutions.

Conclusions: Our study shows that online media has a prompt response to the pandemic with a large number of COVID-19 related articles. There is a high overlap in the frequently used terms across the first 13 months, which may indicate the narrow focus of reporting in certain periods. However, the pandemic-related terminology is well covered.

Authors:
Slobodan Beliga, Sanda Martinčić-Ipšić , Mihaela Matešić, Irena Petrijevčanin Vuksanović, Ana Meštrović
Journal:
JMIR Public Health Surveillance
Publishing date:
16.11.2021
View original article

Primary Sidebar

Latest Projects

ABsistemDCiCloud

Machine Learning for Knowledge Transfer in Medical Radiology

Estimating River Discharges in Highly Stratified Estuaries

Multilayer Framework for the Information Spreading Characterization in Social Media during the COVID-19 Crisis (InfoCoV)

European Network for assuring food integrity using non-destructive spectral sensors

Latest Research Papers

Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning

Entropy-Based Concentration and Instantaneous Frequency of TFDs from Cohen’s, Affine, and Reassigned Classes

Coupled encoding methods for antimicrobial peptide prediction: How sensitive is a highly accurate model?

The Choice of Time–Frequency Representations of Non-Stationary Signals Affects Machine Learning Model Accuracy: A Case Study on Earthquake Detection from LEN-DB Data

Improved Parametrized Multiple Window Spectrogram with Application in Ship Navigation Systems

Latest News

Assoc. prof. Jonatan Lerga received the Croatian Academy of Sciences and Arts award

Dr. Sc. Nikola Lopac successfully defended his doctoral dissertation

Presentation at the conference “Digital Innovation and Technology for People”

Assoc. prof. dr. sc. Jonatan Lerga presented AIRI Center at the IEEE Rijeka : Computer Society Congress 2021

Prof. dr. sc. Ana Mestrovic participated at the Panel on perspectives and real-life applications of AI organized by IEEE Technology and Engineering Management Society

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design