• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Centre for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Vision, Mission and Goals
    • Center Activities
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact

Indoor Localization Based on Infrared Angle of Arrival Sensor Network

01.12.2020

Accurate, inexpensive, and reliable real-time indoor localization holds the key to the full potential of the context-aware applications and location-based Internet of Things (IoT) services. State-of-the-art indoor localization systems are coping with the complex non-line-of-sight (NLOS) signal propagation which hinders the use of proven multiangulation and multilateration methods, as well as with prohibitive installation costs, computational demands, and energy requirements. In this paper, we present a novel sensor utilizing low-range infrared (IR) signal in the line-of-sight (LOS) context providing high precision angle-of-arrival (AoA) estimation. The proposed sensor is used in the pragmatic solution to the localization problem that avoids NLOS propagation issues by exploiting the powerful concept of the wireless sensor network (WSN). To demonstrate the proposed solution, we applied it in the challenging context of the supermarket cart navigation. In this specific use case, a proof-of-concept navigation system was implemented with the following components: IR-AoA sensor prototype and the corresponding WSN used for cart localization, server-side application programming interface (API), and client application suite consisting of smartphone and smartwatch applications. The localization performance of the proposed solution was assessed in, altogether, four evaluation procedures, including both empirical and simulation settings. The evaluation outcomes are ranging from centimeter-level accuracy achieved in static-1D context up to 1 m mean localization error obtained for a mobile cart moving at 140 cm/s in a 2D setup. These results show that, for the supermarket context, appropriate localization accuracy can be achieved, along with the real-time navigation support, using readily available IR technology with inexpensive hardware components.

Authors:
Damir Arbula, Sandi Ljubić
Journal:
Sensors
Publishing date:
04.11.2020
View original article

Primary Sidebar

Latest Projects

Machine Learning for Knowledge Transfer in Medical Radiology

Estimating River Discharges in Highly Stratified Estuaries

Multilayer Framework for the Information Spreading Characterization in Social Media during the COVID-19 Crisis (InfoCoV)

European Network for assuring food integrity using non-destructive spectral sensors

National Competence Centres in the Framework of EuroHPC (EUROCC)

Latest Research Papers

A Comparison of Approaches for Measuring the Semantic Similarity of Short Texts Based on Word Embeddings

Indoor Localization Based on Infrared Angle of Arrival Sensor Network

Gravitational-Wave Burst Signals Denoising Based on the Adaptive Modification of Intersection of Confidence Intervals Rule

Survey of Neural Text Representation Models

Je li blockchain tehnologija budućnost digitalizacije zemljišnih knjiga?

Latest News

UNIRI Excellence Awards in Science

Talk on conference “Exploring Digital Legal Landscapes”

ICAIH 2020 conference presentation

International conference “Exploring Digital Legal Landscapes” – 11th of December, 2020

Sanda Martinčić-Ipšić talk the Data Science Conference

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design