• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Center for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Vision, Mission and Goals
    • Center Activities
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Complex Networks
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact

Improving the Performance of Dynamic Ship Positioning Systems: A Review of Filtering and Estimation Techniques

30.03.2020

Various operations at sea, such as maintaining a constant ship position and direction, require a complex control system. Under such conditions, the ship needs an efficient positioning technique. Dynamic positioning (DP) systems provide such an application with a combination of the actuators mechanism, analyses of crucial ship variables, and environmental conditions. The natural forces of induced nonlinear waves acting on a ship’s hull interfere with the systems. To generate control signals for actuators accurately, sensor measurements should be filtered and processed. Furthermore, for safe and green routing, the forces and moments acting on the ship’s hull should be taken into account in terms of their prediction. Thus, the design of such systems takes into account the problem of obtaining data about the directional wave spectra (DWS). Sensor systems individually cannot provide high accuracy and reliability, so their measurements need to be combined and complemented. Techniques based on the recursive Kalman filter (KF) are used for this purpose. When some measurements are unavailable, the estimation procedure should predict them and, based on the comparison of theoretical and measured states, reduce the error variance of the analyzed signals. Different approaches for improving estimation algorithms have evolved over the years with the indication of improvement. This paper gives an overview of the state-of-the-art estimation and filtering techniques for providing optimum estimation states in DP systems.

Authors:
Denis Selimović, Jonatan Lerga, Jasna Prpić-Oršić, Sasa Kanji
Journal:
Journal of Marine Science and Engineering
Publishing date:
30.03.2020
View original article

Primary Sidebar

Latest Projects

ABsistemDCiCloud

Machine Learning for Knowledge Transfer in Medical Radiology

Estimating River Discharges in Highly Stratified Estuaries

Multilayer Framework for the Information Spreading Characterization in Social Media during the COVID-19 Crisis (InfoCoV)

European Network for assuring food integrity using non-destructive spectral sensors

Latest Research Papers

Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning

Entropy-Based Concentration and Instantaneous Frequency of TFDs from Cohen’s, Affine, and Reassigned Classes

Coupled encoding methods for antimicrobial peptide prediction: How sensitive is a highly accurate model?

The Choice of Time–Frequency Representations of Non-Stationary Signals Affects Machine Learning Model Accuracy: A Case Study on Earthquake Detection from LEN-DB Data

Improved Parametrized Multiple Window Spectrogram with Application in Ship Navigation Systems

Latest News

Assoc. prof. Jonatan Lerga received the Croatian Academy of Sciences and Arts award

Dr. Sc. Nikola Lopac successfully defended his doctoral dissertation

Presentation at the conference “Digital Innovation and Technology for People”

Assoc. prof. dr. sc. Jonatan Lerga presented AIRI Center at the IEEE Rijeka : Computer Society Congress 2021

Prof. dr. sc. Ana Mestrovic participated at the Panel on perspectives and real-life applications of AI organized by IEEE Technology and Engineering Management Society

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design