• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Center for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Center Activities
    • Vision, Mission and Goals
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Complex Networks
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
    • Trustworthy and Explainable AI
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact
  • Login

Extraction of Useful Information Content From Noisy Signals Based on Structural Affinity of Clustered TFDs’ Coefficients

26.04.2019

This paper proposes an automatic method for extraction of useful information content from time-frequency distributions of nonstationary signals heavily corrupted by additive noise. The proposed method, which does not require prior knowledge of the signal, initially performs a one-dimensional clustering of the time-frequency distribution aimed at segmenting it into a fixed number of classes. This procedure points out basic structural differences of noise and signal components (i.e., useful information) in the time-frequency plane. In fact, noise presents a flat spectrum with large time-frequency supports, while signal components are narrow energy ridges. The time-frequency supports are estimated for each of the obtained classes and used as input for an algorithm aimed at discriminating “noise” affine classes, containing mainly non-zero coefficients located outside the components time-frequency supports, from “useful information” affine classes, containing mainly coefficients inside time-frequency supports of the signal components. Simulations show the superiority of the proposed algorithm, mainly in terms of error rate reduction of classified time-frequency coefficients, compared to hard amplitude thresholding methods, as well as to a recently proposed method for information content extraction based on adaptive thresholding, which is also outperformed in terms of computational complexity and execution time (by up to 43 and 28 times, respectively).

The research was conducted at the Faculty of Engineering, University of Rijeka (www.riteh.uniri.hr).

Authors:
Nicoletta Saulig, Jonatan Lerga, Željka Milanović, Cornel Ioana
Journal:
IEEE Transactions on Signal Processing
Publishing date:
18.04.2019
View original article

Primary Sidebar

Latest Projects

Advanced Data Analysis Using Digital Signal Processing and Machine Learning Techniques

Compound Flooding in Coastal Rivers in Present and Future Climate

Data Processing on Graphs

North Adriatic Hydrogen Valley

Data Governance and Intellectual Property Governance in Common European Data Spaces – DGIP-CEDS

Latest Research Papers

Forecasting the Trajectory of Personal Watercrafts Using Models Based on Recurrent Neural Networks

A System for Real-Time Detection of Abandoned Luggage

Enhancing Biophysical Muscle Fatigue Model in the Dynamic Context of Soccer

Pravna tehnologija (Legal Tech) i njezina (ne)prikladnost za zamjenu pravne struke

Regression-Based Machine Learning Approaches for Estimating Discharge from Water Levels in Microtidal Rivers

Latest News

Arian Skoki defended his doctoral thesis “Data-Driven Assessment of Player Performance and Recovery in Soccer”

Anna Maria Mihel defended her PhD dissertation topic

Prof. dr. sc. Renato Filjar participated at the meeting of the 31st National Space-Based Positioning, Navigation and Timing US Advisory Board

Presentation of the NPOO project Peoplet

Ana Vranković Lacković defended her doctoral thesis

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design