• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Center for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Center Activities
    • Vision, Mission and Goals
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Complex Networks
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
    • Trustworthy and Explainable AI
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact
  • Login

Development and evaluation on a wireless multi-gas-sensors system for improving traceability and transparency of table grape cold chain

01.04.2017

There is increasing requirement to improve traceability and transparency of table grapes cold chain. Key traceability indicators including temperature, humidity and gas microenvironments (e.g., CO2, O2, and SO2) based on table grape cold chain management need to be monitored and controlled. This paper presents a Wireless Multi-Gas-Sensors System (WGS2) as an effective real-time cold chain monitoring system, which consists of three units: (1) the WMN which applies the 433 MHz as the radio frequency to increase the transmission performance and forms a wireless sensor network; (2) the WAN which serves as the intermediary to connect the users and the sensor nodes to keep the sensor data without delay by the GPRS remote transmission module; (3) the signal processing unit which contains embedded software to drive the hardware to normal operation and shelf life prediction for table grapes. Then the study evaluates the WGS2 in a cold chain scenario and analyses the monitoring data. The results show that the WGS2 is effective in monitoring quality, and improving transparency and traceability of table grape cold chains. Its deploy ability and efficiency in implantation can enable the establishment of a more efficient, transparent and traceable table grape supply chain.

Authors:
Xiang Wang, Qile He, Maja Matetić, Tomislav Jemrić, Xiaoshuan Zhang
Journal:
Computers and Electronics in Agriculture, Volume 135
Publishing date:
01.04.2017
View original article

Primary Sidebar

Latest Projects

Advanced Data Analysis Using Digital Signal Processing and Machine Learning Techniques

Compound Flooding in Coastal Rivers in Present and Future Climate

Data Processing on Graphs

North Adriatic Hydrogen Valley

Data Governance and Intellectual Property Governance in Common European Data Spaces – DGIP-CEDS

Latest Research Papers

Forecasting the Trajectory of Personal Watercrafts Using Models Based on Recurrent Neural Networks

A System for Real-Time Detection of Abandoned Luggage

Enhancing Biophysical Muscle Fatigue Model in the Dynamic Context of Soccer

Pravna tehnologija (Legal Tech) i njezina (ne)prikladnost za zamjenu pravne struke

Regression-Based Machine Learning Approaches for Estimating Discharge from Water Levels in Microtidal Rivers

Latest News

Arian Skoki defended his doctoral thesis “Data-Driven Assessment of Player Performance and Recovery in Soccer”

Anna Maria Mihel defended her PhD dissertation topic

Prof. dr. sc. Renato Filjar participated at the meeting of the 31st National Space-Based Positioning, Navigation and Timing US Advisory Board

Presentation of the NPOO project Peoplet

Ana Vranković Lacković defended her doctoral thesis

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design