• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Center for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Center Activities
    • Vision, Mission and Goals
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Complex Networks
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
    • Trustworthy and Explainable AI
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact
  • Login

Detection of Non-Stationary GW Signals in High Noise from Cohen’s Class of Time-Frequency Representations Using Deep Learning

31.12.2021

Analysis of non-stationary signals in a noisy environment is a challenging research topic in many fields often requiring simultaneous signal decomposition in the time and frequency domain. This paper proposes a method for the classification of noisy non-stationary time-series signals based on Cohen’s class of their time-frequency representations (TFRs) and deep learning algorithms. We demonstrated the proposed approach on the example of detecting gravitational-wave (GW) signals in intensive real-life, non-stationary, non-white, and non-Gaussian noise. For this purpose, we prepared a dataset based on the actual data from the Laser Interferometer Gravitational-Wave Observatory (LIGO) detector and the synthetic GW signals obtained by realistic simulations. Next, 12 different TFRs from Cohen’s class were calculated from the original noisy time-series data and used to train three state-of-the-art convolutional neural network (CNN) architectures: ResNet-101, Xception, and EfficientNet. The obtained classification results are compared to those achieved by the base model trained on the original time series. Analysis of the results suggests that the proposed approach combining deep CNN architectures with Cohen’s class TFRs yields high values of performance metrics and significantly improves the classification performance compared to the base model. The TFR-CNN models achieve the values of the classification accuracy of up to 97.10%, the area under the receiver operating characteristic curve (ROC AUC) of up to 0.9885, the recall of up to 95.87%, the precision of up to 99.51%, the F1 score of up to 97.03%, and the area under the precision-recall curve (PR AUC) of up to 0.9920. This classification performance is obtained on the dataset in which the signal-to-noise ratio (SNR) values of the raw, noisy time-series signals range from -123.46 to -2.27 dB. Therefore, this study suggests that using alternative TFRs of Cohen’s class can improve the deep learning-based detection of non-stationary GW signals in an intensive noise environment. Moreover, the proposed approach can also be a viable solution for deep learning-based analysis of numerous other noisy non-stationary signals in different practical applications.

Authors:
Nikola Lopac, Franko Hržić, Irena Petrijevčanin Vuksanović, Jonatan Lerga
Journal:
IEEE Access
Publishing date:
30.12.2021
View original article

Primary Sidebar

Latest Projects

Advanced Data Analysis Using Digital Signal Processing and Machine Learning Techniques

Compound Flooding in Coastal Rivers in Present and Future Climate

Data Processing on Graphs

North Adriatic Hydrogen Valley

Data Governance and Intellectual Property Governance in Common European Data Spaces – DGIP-CEDS

Latest Research Papers

Forecasting the Trajectory of Personal Watercrafts Using Models Based on Recurrent Neural Networks

A System for Real-Time Detection of Abandoned Luggage

Enhancing Biophysical Muscle Fatigue Model in the Dynamic Context of Soccer

Pravna tehnologija (Legal Tech) i njezina (ne)prikladnost za zamjenu pravne struke

Regression-Based Machine Learning Approaches for Estimating Discharge from Water Levels in Microtidal Rivers

Latest News

Arian Skoki defended his doctoral thesis “Data-Driven Assessment of Player Performance and Recovery in Soccer”

Anna Maria Mihel defended her PhD dissertation topic

Prof. dr. sc. Renato Filjar participated at the meeting of the 31st National Space-Based Positioning, Navigation and Timing US Advisory Board

Presentation of the NPOO project Peoplet

Ana Vranković Lacković defended her doctoral thesis

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design