• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Center for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Center Activities
    • Vision, Mission and Goals
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Complex Networks
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
    • Trustworthy and Explainable AI
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact
  • Login

Design and Implementation of Anonymized Social Network-based Mobile Game System for Learning Mathematics

01.12.2018

Group work and student collaboration during problem solving sessions are teaching methods which positively affect learning outcomes and socialisation. It is extremely complex to find a way of applying these methods to make them appropriate for and interesting to the new digital generation of students. This paper proposes a model which enables social network collaboration between primary school students within the system for mobile game-based learning of mathematics. It also suggests technology and proposes a general model which enables researchers to access anonymized data, teachers to keep track of student progress, and students to keep track of their own progress relative to other students, all at the same time. A microblogging social network service is integrated in the system in a way that enables sending messages without additional authentication and thus facilitates dynamics of the system. The proposed model enables mining of anonymized data streams originating from both the game and the social network. In this paper the model is used for the analysis of concepts which students most often publish, and for the analysis of their correlation with other activities within the system. Social network posts are analysed with the aim to detect students capable of taking advanced classes which cover more complex areas than the regular curriculum.

Authors:
Petar Jurić, Maja Matetić, Marija Brkić Bakarić
Journal:
International Journal Emerging Technologies in Learning, Vol 13, No 12 (2018)
Publishing date:
01.12.2018
View original article Download the paper

Primary Sidebar

Latest Projects

Advanced Data Analysis Using Digital Signal Processing and Machine Learning Techniques

Compound Flooding in Coastal Rivers in Present and Future Climate

Data Processing on Graphs

North Adriatic Hydrogen Valley

Data Governance and Intellectual Property Governance in Common European Data Spaces – DGIP-CEDS

Latest Research Papers

Digital Twin-Driven Federated Learning and Reinforcement Learning-Based Offloading for Energy-Efficient Distributed Intelligence in IoT Networks

Forecasting the Trajectory of Personal Watercrafts Using Models Based on Recurrent Neural Networks

A System for Real-Time Detection of Abandoned Luggage

Enhancing Biophysical Muscle Fatigue Model in the Dynamic Context of Soccer

Pravna tehnologija (Legal Tech) i njezina (ne)prikladnost za zamjenu pravne struke

Latest News

Invited lecture: “About the first GPS receiver on the Moon, and the other NASA space PNT stories” by James J. Miller (NASA)

Agreement on collaboration between the Faculty of Engineering in Rijeka and the Shanghai Artificial Intelligence Research Institute

Arian Skoki defended his doctoral thesis “Data-Driven Assessment of Player Performance and Recovery in Soccer”

Anna Maria Mihel defended her PhD dissertation topic

Prof. dr. sc. Renato Filjar participated at the meeting of the 31st National Space-Based Positioning, Navigation and Timing US Advisory Board

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design