• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Centre for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Vision, Mission and Goals
    • Center Activities
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact

Customizing morphology, size, and response kinetics of matrix metalloproteinase-responsive nanostructures by systematic peptide design

28.01.2019

Overexpression and activation of matrix metalloproteinase-9 (MMP-9) is associated with multiple diseases and can serve as a stimulus to activate nanomaterials for sensing and controlled release. In order to achieve autonomous therapeutics with improved space-time targeting capabilities, several features need to be considered beyond the introduction of an enzyme-cleavable linker into a nanostructure. We introduce guiding principles for a customizable platform using supramolecular peptide nanostructures with three modular components to achieve tunable kinetics and morphology changes upon MMP-9 exposure. This approach enables (1) fine-tuning of kinetics through introduction of ordered/disordered structures, (2) a 12-fold variation in hydrolysis rates achieved by electrostatic (mis)matching of particle and enzyme charge, and (3) selection of enzymatic reaction products that are either cell-killing nanofibers or disintegrate. These guiding principles, which can be rationalized and involve exchange of just a few amino acids, enable systematic customization of enzyme-responsive peptide nanostructures for general use in performance optimization of enzyme-responsive materials.

Authors:
Jiye Son, Daniela Kalafatović, Mohit Kumar, Barney Yoo, Mike A Cornejo, María Contel, Rein V Ulijn
Journal:
ACS nano
Publishing date:
28.01.2019
View original article

Primary Sidebar

Latest Projects

Machine Learning for Knowledge Transfer in Medical Radiology

Estimating River Discharges in Highly Stratified Estuaries

Multilayer Framework for the Information Spreading Characterization in Social Media during the COVID-19 Crisis (InfoCoV)

European Network for assuring food integrity using non-destructive spectral sensors

National Competence Centres in the Framework of EuroHPC (EUROCC)

Latest Research Papers

Rule-Based EEG Classifier Utilizing Local Entropy of Time–Frequency Distributions

Rethinking Effects of Innovation in Competition In The Era of New Digital Technologies

A Comparison of Approaches for Measuring the Semantic Similarity of Short Texts Based on Word Embeddings

Indoor Localization Based on Infrared Angle of Arrival Sensor Network

Gravitational-Wave Burst Signals Denoising Based on the Adaptive Modification of Intersection of Confidence Intervals Rule

Latest News

U Rijeci radi Centar za umjetnu inteligenciju, već su u prvoj godini rada povukli šest milijuna u 14 projekata

UNIRI Excellence Awards in Science

Talk on conference “Exploring Digital Legal Landscapes”

ICAIH 2020 conference presentation

International conference “Exploring Digital Legal Landscapes” – 11th of December, 2020

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design