• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Centre for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Vision, Mission and Goals
    • Center Activities
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact

Algorithm-supported, mass and sequence diversity-oriented random peptide library design

28.03.2019

Random peptide libraries that cover large search spaces are often used for the discovery of new binders, even when the target is unknown. To ensure an accurate population representation, there is a tendency to use large libraries. However, parameters such as the synthesis scale, the number of library members, the sequence deconvolution and peptide structure elucidation, are challenging when increasing the library size. To tackle these challenges, we propose an algorithm-supported approach to peptide library design based on molecular mass and amino acid diversity. The aim is to simplify the tedious permutation identification in complex mixtures, when mass spectrometry is used, by avoiding mass redundancy. For this purpose, we applied multi (two- and three-)-objective genetic algorithms to discriminate between library members based on defined parameters. The optimizations led to diverse random libraries by maximizing the number of amino acid permutations and minimizing the mass and/or sequence overlapping. The algorithm-suggested designs offer to the user a choice of appropriate compromise solutions depending on the experimental needs. This implies that diversity rather than library size is the key element when designing peptide libraries for the discovery of potential novel biologically active peptides.

Authors:
Daniela Kalafatović, Goran Mauša, Toni Todorovski, Ernest Giralt
Journal:
Journal of Cheminformatics
Publishing date:
28.03.2019
View original article

Primary Sidebar

Latest Projects

Machine Learning for Knowledge Transfer in Medical Radiology

Estimating River Discharges in Highly Stratified Estuaries

Multilayer Framework for the Information Spreading Characterization in Social Media during the COVID-19 Crisis (InfoCoV)

European Network for assuring food integrity using non-destructive spectral sensors

National Competence Centres in the Framework of EuroHPC (EUROCC)

Latest Research Papers

Rule-Based EEG Classifier Utilizing Local Entropy of Time–Frequency Distributions

Rethinking Effects of Innovation in Competition In The Era of New Digital Technologies

A Comparison of Approaches for Measuring the Semantic Similarity of Short Texts Based on Word Embeddings

Indoor Localization Based on Infrared Angle of Arrival Sensor Network

Gravitational-Wave Burst Signals Denoising Based on the Adaptive Modification of Intersection of Confidence Intervals Rule

Latest News

U Rijeci radi Centar za umjetnu inteligenciju, već su u prvoj godini rada povukli šest milijuna u 14 projekata

UNIRI Excellence Awards in Science

Talk on conference “Exploring Digital Legal Landscapes”

ICAIH 2020 conference presentation

International conference “Exploring Digital Legal Landscapes” – 11th of December, 2020

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design