• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Center for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Center Activities
    • Vision, Mission and Goals
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Complex Networks
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
    • Trustworthy and Explainable AI
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact
  • Login

Adaptive Filtering and Analysis of EEG Signals in the Time-Frequency Domain Based on the Local Entropy

26.02.2020

The brain dynamics in the electroencephalogram (EEG) data are often challenging to interpret, specially when the signal is a combination of desired brain dynamics and noise. Thus, in an EEG signal, anything other than the desired electrical activity, which is produced due to coordinated electrochemical process, can be considered as unwanted or noise. To make brain dynamics more analyzable, it is necessary to remove noise in the temporal location of interest, as well as to denoise data from a specific spatial location. In this paper, we propose a novel method for noisy EEG analysis with accompanying toolbox which includes adaptive, data-driven noise removal technique based on the improved intersection of confidence interval (ICI)-based algorithm. Next, a local entropy-based method for EEG data analysis was designed and included in the toolbox. As shown in the paper, the relative intersection of confidence interval (RICI) procedure retains the dominant dipole activity projected on electrodes, while the local (short-term) Rényi entropy-based analysis of the EEG representation in the time-frequency domain is efficient in detecting the presence of P300 event-related potential (ERP) at specific electrodes. Namely, the P300 are detected as sharp drop of entropy in the temporal domain that enabled accurate calculation of the index of the noise class for the EEG signals.

The research was conducted at the Faculty of Engineering, University of Rijeka (www.riteh.uniri.hr).

Authors:
Guruprasad Madhale Jadav, Jonatan Lerga, Ivan Štajduhar
Journal:
EURASIP Journal on Advances in Signal Processing
Publishing date:
24.02.2020
View original article

Primary Sidebar

Latest Projects

Advanced Data Analysis Using Digital Signal Processing and Machine Learning Techniques

Compound Flooding in Coastal Rivers in Present and Future Climate

Data Processing on Graphs

North Adriatic Hydrogen Valley

Data Governance and Intellectual Property Governance in Common European Data Spaces – DGIP-CEDS

Latest Research Papers

Forecasting the Trajectory of Personal Watercrafts Using Models Based on Recurrent Neural Networks

A System for Real-Time Detection of Abandoned Luggage

Enhancing Biophysical Muscle Fatigue Model in the Dynamic Context of Soccer

Pravna tehnologija (Legal Tech) i njezina (ne)prikladnost za zamjenu pravne struke

Regression-Based Machine Learning Approaches for Estimating Discharge from Water Levels in Microtidal Rivers

Latest News

Arian Skoki defended his doctoral thesis “Data-Driven Assessment of Player Performance and Recovery in Soccer”

Anna Maria Mihel defended her PhD dissertation topic

Prof. dr. sc. Renato Filjar participated at the meeting of the 31st National Space-Based Positioning, Navigation and Timing US Advisory Board

Presentation of the NPOO project Peoplet

Ana Vranković Lacković defended her doctoral thesis

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design