• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Center for Artificial Intelligence and Cybersecurity – AIRI

  • Home
  • About Us
    • Vision, Mission and Goals
    • Center Activities
    • Center Faculty
    • Steering Committee
    • Press
  • Research
    • Scientific Projects
    • Research Papers
  • Laboratories
    • Machine Learning
    • Natural Speech & Language Processing
    • Blockchain Technology
    • Information Processing & Pattern Recognition
    • AI in Medicine
    • Data Mining
    • Computer Vision
    • Complex Networks
    • Human-Computer Interaction
    • Maritime Cybersecurity
    • Autonomous Navigation
    • AI in Mechatronics
    • AI in Education
    • Hybrid Computational Methods
    • Drug Design
    • Legal Aspects of AI
    • Ethically Aligned AI
    • Cultural Complexity
  • Collaboration
    • Industry Collaboration
    • Industry Projects
    • International Collaboration
  • News
  • Contact

A Novel Approach to Extracting Useful Information From Noisy TFDs Using 2D Local Entropy Measures

25.04.2020

The paper proposes a novel approach for extraction of useful information and blind source separation of signal components from noisy data in the time-frequency domain. The method is based on the local Rényi entropy calculated inside adaptive, data-driven 2D regions, the sizes of which are calculated utilizing the improved, relative intersection of confidence intervals (RICI) algorithm. One of the advantages of the proposed technique is that it does not require any prior knowledge on the signal, its components, or noise, but rather the processing is performed on the noisy signal mixtures. Also, it is shown that the method is robust to the selection of time-frequency distributions (TFDs). It has been tested for different signal-to-noise-ratios (SNRs), both for synthetic and real-life data. When compared to fixed TFD thresholding, adaptive TFD thresholding based on RICI rule and the 1D entropy-based approach, the proposed adaptive method significantly increases classification accuracy (by up to 11.53%) and F1 score (by up to 7.91%). Hence, this adaptive, data-driven, entropy-based technique is an efficient tool for extracting useful information from noisy data in the time-frequency domain.

Authors:
Ana Vranković, Jonatan Lerga, Nicoletta Saulig
Journal:
EURASIP Journal on Advances in Signal Processing
Publishing date:
25.04.2020
View original article

Primary Sidebar

Latest Projects

ABsistemDCiCloud

Machine Learning for Knowledge Transfer in Medical Radiology

Estimating River Discharges in Highly Stratified Estuaries

Multilayer Framework for the Information Spreading Characterization in Social Media during the COVID-19 Crisis (InfoCoV)

European Network for assuring food integrity using non-destructive spectral sensors

Latest Research Papers

Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning

Entropy-Based Concentration and Instantaneous Frequency of TFDs from Cohen’s, Affine, and Reassigned Classes

Coupled encoding methods for antimicrobial peptide prediction: How sensitive is a highly accurate model?

The Choice of Time–Frequency Representations of Non-Stationary Signals Affects Machine Learning Model Accuracy: A Case Study on Earthquake Detection from LEN-DB Data

Improved Parametrized Multiple Window Spectrogram with Application in Ship Navigation Systems

Latest News

Assoc. prof. Jonatan Lerga received the Croatian Academy of Sciences and Arts award

Dr. Sc. Nikola Lopac successfully defended his doctoral dissertation

Presentation at the conference “Digital Innovation and Technology for People”

Assoc. prof. dr. sc. Jonatan Lerga presented AIRI Center at the IEEE Rijeka : Computer Society Congress 2021

Prof. dr. sc. Ana Mestrovic participated at the Panel on perspectives and real-life applications of AI organized by IEEE Technology and Engineering Management Society

We provide the expertise for solving real world problems using AI

If your company wants to implement artificial intelligence in your products or services, or increase your level of cybersecurity, our multidisciplinary team of scientists is your ideal partner.

Contact us

Footer

Center for Artificial Intelligence and Cybersecurity
  • jlerga@airi.uniri.hr
  • +385 51 406 500

University of Rijeka

University of Rijeka

About the Center

  • About Us
  • News
  • Privacy Policy
  • Contact

Center Activities

  • Laboratories
  • Scientific Projects
  • Industry Projects
  • Research Papers
  • Industry Collaboration
  • International Collaboration

Footer bottom left

© 2020 Center for Artificial Intelligence and Cybersecurity, all rights reserved.

Designed & developed by Nela Dunato Art & Design