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ABSTRACT Global terrorist threats and illegal migration have intensified concerns for the security of
citizens, and every effort is made to exploit all available technological advances to prevent adverse events
and protect people and their property. Due to the ability to use at night and in weather conditions where RGB
cameras do not perform well, thermal cameras have become an important component of sophisticated video
surveillance systems. In this paper, we investigate the task of automatic person detection in thermal images
using convolutional neural network models originally intended for detection in RGB images. We compare the
performance of the standard state-of-the-art object detectors such as Faster R-CNN, SSD, Cascade R-CNN,
and YOLOV3, that were retrained on a dataset of thermal images extracted from videos that simulate illegal
movements around the border and in protected areas. Videos are recorded at night in clear weather, rain,
and in the fog, at different ranges, and with different movement types. YOLOv3 was significantly faster than
other detectors while achieving performance comparable with the best, so it was used in further experiments.
We experimented with different training dataset settings in order to determine the minimum number of
images needed to achieve good detection results on test datasets. We achieved excellent detection results
with respect to average accuracy for all test scenarios although a modest set of thermal images was used for
training. We test our trained model on different well known and widely used thermal imaging datasets as
well. In addition, we present the results of the recognition of humans and animals in thermal images, which
is particularly important in the case of sneaking around objects and illegal border crossings. Also, we present
our original thermal dataset used for experimentation that contains surveillance videos recorded at different
weather and shooting conditions.

INDEX TERMS Convolutional neural networks, object detector, person detection, surveillance, thermal
imaging, YOLO.

I. INTRODUCTION

Because of global terrorist threats and illegal migration,
concerns about the safety of citizens have been intensified.
To prevent unwanted events and to protect people and their
property, investment in security systems has reached record
levels trying to utilize all available technological achieve-
ments to develop sophisticated systems.

Thermal cameras are now ubiquitous in video surveillance
systems that take care of the safety of people and objects
in urban areas, on state borders, and other monitored and
guarded areas. Thermal cameras are important for surveil-
lance and security because they can be used in such weather
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conditions when ordinary RGB cameras cannot be used or
when they give poor results, such as in the night and darkness
(Fig. 1.), or in the rain and fog.

In order to facilitate surveillance and increase security,
it is important to detect unauthorized persons, suspicious
movements in protected areas, and prevent illegal border
crossings in a timely manner. The ability to automatically
detect a person or object and alert a suspicious situation is
very important for the security system.

So far, many successful machine learning algorithms have
been developed for detecting and tracking objects such as
the human face [1], [2] or the human figure [3] in RGB
optical images. The purpose of object detection is to clas-
sify objects and mark their exact position in image or
video.
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FIGURE 1. Night vision (left) vs. thermal imaging (right) [20].

Nowadays, the best object detection results are achieved
in RGB images by models based on convolutional neural
networks (CNN). The popularity of convolutional neural net-
works and deep learning began with the great success of
AlexNet for the image recognition task in ImageNet Chal-
lenge in 2012 [4]. Since then, many successful CNN archi-
tectures for object detection have been developed, such as
Fast R-CNN [5], SSD [6], Mask R-CNN [7], R-FCN [8] and
YOLO [9]-[11] and adapted for different tasks [12]-[19].

Due to the differences in visual and thermal image features,
the aim is to explore how deep learning methods that are
successful for object detection in optical images will perform
with thermal imaging.

To evaluate the detection performance, we introduce an
original dataset of thermal videos and images that simulate
illegal movements around the border and in protected areas
and are designed for training machines and deep learning
models. The videos are recorded in areas around the forest,
in different weather conditions at night — in the clear weather,
in the rain, and in the fog, and with people in different body
positions (upright, hunched) and movement speeds (regu-
lar walking, running) at different ranges from the camera.
In addition to using standard camera lenses, telephoto lenses
were also used to test their impact on the quality of thermal
images and person detection given different weather condi-
tions and distance from the camera. The obtained dataset
comprises 7412 manually labeled images extracted from
video frames captured in the long-wave infrared (LWIR)
segment of the electromagnetic (EM) spectrum.

For the detection task, the YOLOv3 network [11] was
used, which achieves object detection results in RGB images
at the state-of-the-art level. Models based on the YOLOv3
network were trained on subsets of our dataset and the results
of human detection in thermal videos using the out-of-the-
box YOLO neural network and the trained YOLO models
were compared. The models were tested both on our own
and seven different widely used and well-known thermal
imaging datasets. The experimental results have shown the
significantly improved performance of human detection in
thermal imaging in terms of average precision for the trained
YOLO model over the original model given the different
weather and shooting conditions.

The main contributions of this paper are a) domain adap-
tation and use of convolutional neural network-based models
that were originally intended for detection in RGB images
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in new settings of automatic object (person) detection in
thermal images, b) analysis of the effect of using only training
data acquired during clear weather, on model performance
in difficult weather conditions where training data is harder
to obtain (rain, fog) c) analysis of the effect of quantity of
training data needed to achieve the detection successfully, d)
original dataset of thermal images taken in different weather
conditions that simulates realistic conditions of illegal move-
ments around the border.

This paper is organized as follows: an overview of related
work is presented in the next section. The basic information
about thermal imagery is provided in Section 3, and the detec-
tion pipeline of the YOLO object detector is given in Section
4. Dataset and object detection experiments are described in
Section 5. The results are presented and discussed in Section
6. The paper ends with the conclusion and direction for future
research.

Il. RELATED WORK

The use of convolutional neural networks (CNN, CONVnet)
instead of standard classification algorithms is a trend in
the research area of human detection, regardless of the task
is nighttime detection using thermal imaging cameras or
daytime detection using standard optical cameras. Thermal
images are mainly used to detect the presence of people at
night or in bad lighting conditions but can perform poorly
in the daytime when there is insufficient thermal contrast
between the people and their surroundings. Therefore, the
authors in [21] proposed to augment thermal images with
their saliency maps, to serve as an attention mechanism for
the pedestrian detector. They trained the Faster R-CNN for
pedestrian detection and report the added effect of saliency
maps generated using static and deep methods (PiCA-Net and
R3-Net). Their best performing model results in an absolute
reduction of miss rate by 13.4% and 19.4% over the baseline
in a day and night images respectively. The authors [22]
also proposed the usage of deep learning and saliency maps
for pedestrian detection at night. They integrate a hardwired
adaptive Boolean-map-based saliency (ABMS) kernel with
the YOLO detector, to generate a saliency feature map that
boosts the pedestrian from the background based on the
particular season. In [23], [24] YOLO detector was trained
on a thermal image dataset for person detection. This paper
greatly extends the scope of that work by analyzing different
weather conditions separately, by testing on other datasets
and including possibly confusing objects such as animals in
the test.

In [25], the authors proposed the use of LWIR thermal
images for counting people in public spaces such as class-
rooms. They developed a people counting algorithm on a
custom dataset of 3000 thermal images recorded in stu-
dent’s workrooms, based on small CNNs that can be run
on a limited-memory low-power platform such as Cortex
M4, with reported error-free detection on 53.7% of the test
images. Apart from the use of CNNs for human detection on
thermal images and video, some authors proposed the use
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of CNNs for object tracking in thermal images as in [26].
In [27] the authors demonstrated enhanced target recogni-
tion and improved false alarm rates for a mid to long-range
detection system, utilizing an LWIR sensor. They report an
overall accuracy of over 95% for six object classes related
to land defense using the CNN-based detector. A method
for real-time human detection in thermal images based on
background modeling and CNN is presented in [28]. For
real-time implementation, the background modeling is done
by modified running Gaussian average and the CNN-based
human classification is performed only for the detected fore-
ground objects.

Wang and Hosseinyalamdary in [29] applied deep convolu-
tional neural networks for human detection on stacked frames
from thermal video thus including some temporal informa-
tion. The convolutional neural network that used stacked
video frames had 21.4% higher accuracy than the neural
network trained using single images on their test.

The infrared video-based automatic target detection/
recognition (ATD/R) system presented in Zhang et al. [30]
uses a Faster-RCNN detector trained on IR images combined
with a super-resolution method to deal with the issue of a
small number of pixels that targets at the long-range have.
The system was tested using two datasets under different
weather conditions, featuring pedestrians and six different
types of ground vehicles as target types, and the tests show
improved performance for long-range targets with the use of
a super-resolution method.

The development of CNNs helped for moving surveillance
systems to embedded devices like the Raspberry Pi. Khal-
ifa et al. [31] presented a survey of different systems and
techniques that have been deployed on embedded devices.
They covered the characteristics of datasets, feature extrac-
tion techniques, and machine learning models. Also, they
utilized a unified dataset to compare different systems con-
cerning accuracy and performance time and suggested new
enhancements, and future research directions.

Human detection and recognition on thermal images and
videos and its applications are still growing and challenging
research area, not only in the area of computer vision and
deep learning but also in other areas like IR and technology.
Researchers show interest in thermal imaging for human
detection, as well in methods that combine thermal imaging
with images recorded in other wavelengths like in [32]. The
authors evaluate pixel-level image fusion of infrared and
RGB images to improve the CNN-based pedestrian detectors
so that they can work in a day and night conditions, which
is crucial in advanced driver-assistance systems (ADAS),
autonomous vehicles and video surveillance. Besides ther-
mal imaging, some researchers used near IR in combination
with CNNs [33] for pedestrian detection. They presented a
method based on a 9-layer CNN model with self-learning
soft-max for nighttime pedestrian detection and reported
a 94.49% accuracy on a set of 15,000 testing samples.
Imran et al. [34] presented a novel saliency-aware descriptor
called Stacked Saliency Difference Image (SSDI) to model
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local and global spatio-temporal motion information for
Human Action Recognition (HAR) in IR images. They use
a four-stream deep framework built upon CNN and recurrent
neural network (RNN) models and report results of 8§3.5% on
InfAR dataset [35], and baseline result of 75.17% on their
proposed IITR-IAR dataset [34]. The application of CNNs
for human detection, recognition, and action classification are
also presented in [36]-[40].

lll. THERMAL IMAGERY

Infrared (IR) thermal cameras record the heat generated or
reflected by objects being monitored and convert the detected
energy into temperature values to form an image.

Cameras operating in the MWIR and LWIR bands (Fig.
2) do not require an additional source of light or heat, because
the thermal radiation sensors in these ranges capture the
emitted thermal energy of observed objects [41], [42].

Reflected IR Thermal IR
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NIR SWIR MWIR Low transmittance LWIR // VLWIR
window
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FIGURE 2. Electromagnetic spectrum with illustrated IR segments.

For this reason, unlike visible light cameras, they are
invariant to illumination conditions, robust to a wide range
of light variations [43], [44] and weather conditions, and
can operate in total darkness. In this work, the focus is on
using the LWIR subspectrum, which can also be a method of
improving the visibility of objects in dark environments.

However, thermal imaging sensors provide much less
detail than visible-light cameras, because instead of the infor-
mation that color provides in the visible spectrum, they only
provide the detected temperature ranges in the thermograms,
Fig. 3, usually with much lower resolution.

FIGURE 3. IR sensors provide much fewer details (left) than the optical
sensor of visible light (right).

Also, changes in the ambient temperature affect the quality
of thermal images since images are formed by the radiated
intensity difference between objects and their surroundings
and thus a higher ambient temperature can decrease the con-
trast between the detected object and the background, Fig. 4.

The temperature scale in images changes depending on the
ambient temperature and the temperature of objects. Thermal
images are usually presented in pseudo-color where the low-
est color (dark blue) corresponds to the coolest part of the
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FIGURE 4. IR sensors are very sensitive to changes in ambient
temperature.

image and the brightest (white) corresponds to the hottest part
of the image. E.g., in Fig. 4. (left), light blue corresponds to
14.9 °C, and in Fig. 4. (right) the same temperature corre-
sponds to red color. On the other hand, in Fig. 4. (middle),
the blue color corresponds to a temperature of 11.6 °C.

The heat that objects themselves emit is also not constant
but depends on the internal state of the object. For exam-
ple, during running or intense exercise, the production of
metabolic heat in the human body may increase 10 to 20 times
compared to the heat production at rest which is reflected in
the increase in body temperature [45].

A. THERMAL CAMERA CHARACTERISTIC FOR
SURVEILLANCE APPLICATIONS

Recording distance and the type and quality of the thermal
camera and its thermal imaging sensor are significant for
human detection because they directly affect the image or
video resolution and the size of the human figure in the
recording. The impact of sensor resolution, recording dis-
tance, and image quality on object detection, recognition,
and identification were studied in [46], where experiments
based on TTP (Targeting Task Performance) were conducted
to determine the effective distance for each of the tasks.

The probability of success for each of the tasks was found
to be directly related to the distance at which images are cap-
tured and the quality or resolution of the camera. Considering
the same rate of success, object detection is possible at longer
distances than object identification, which is only viable at
the smallest distances. Also, with higher camera resolution,
larger distances can be achieved. For example, with a smaller
resolution camera, object detection was found successful with
80% probability up to at about 1.4 km, recognition at up
to 0.5 km and identification up to about 200 m, while with
higher resolution camera, with the same rate of success,
identification was possible up to 0.7 km, recognition up to
1.2 km and detection up to about 2.2 km [46].

Weather conditions are another major factor that affects the
recording quality and thus the detection performance. With
the deterioration of weather conditions, the distance at which
it is possible to make a successful object or person detection
is reduced [23]. For example, somebody parts that may be
important for object recognition, such as human leg, are tiny
in the case of long-distance shooting and are represented
with only a few pixels in the image. In bad weather, the
image quality may deteriorate so that these parts are heavily
degraded or not visible at all. That loss of information can
heavily affect the performance of the classifier.
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In protected environments such as in border controls or
airports for 24/7 all-weather surveillance, both mid-range
and long-range thermal camera sensors can be used. Sensor
operating in different bands have their strengths and limita-
tions, so there is no perfect choice between LWIR and MWIR
that covers all surveillance scenarios. Different environment,
climatic, temperature, and weather conditions affect sensor
performance in different ways, with typical operating con-
ditions for surveillance applications summarized in Table 1.
Both bands see negligible solar effects but are adversely
affected by fog and rain, although the LWIR band has bet-
ter performance than MWIR in foggy conditions. For most
target ranges MWIR sensors are less affected by humidity
than LWIR sensors and have higher atmospheric transmission
than LWIR in most climates. MWIR sensors are favorable
in warmer climates while LWIR is preferred for colder cli-
mates [43], [47].

TABLE 1. MWIR and LWIR band characteristic for surveillance
applications.

Condition MWIR band LWIR band
Climate warmer colder
High humidity >2.5km <2.5km
Atmo§pher1c rain rain/smoke/aerosols/fog
constituents
more flux available at most
Target high-temperature targets scenes on ambient temp er.ature
temperature  (airplanes or missiles) (flux - thermal energy emitted
P P by targets and environment
background)
Atmospheric  very long-range detection

transmission  (>=10 km)
coastal and vessel traffic
surveillance, harbor

protection

Applications Firefighting, military

A convenient solution for surveillance systems is to use
thermal cameras that are simultaneously active in both MWIR
and LWIR bands, such as the widely used FLIR systems
(Forward Looking Infrared) [48] cameras. A group of humans
recorded at the distance of about 110 meters in nighttime and
clear weather conditions with the FLIR Thermacam P10 is
shown in Fig. 5 [49].

FIGURE 5. Comparison of the same scene in colorized, RGB (left) and
Greyscale (right) showing group of humans at a distance of 110 m
(night-time, clear weather), recorded using FLIR Thermacam P10.

For recordings at a larger distance or in fog conditions
and heavy rain, telephoto lenses may be used instead of the
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FIGURE 6. Human silhouette recorded with standard lenses at 110 m
(left) and with telephoto lenses at 165 m (right).

standard lens. As seen in an example in Fig. 6, the visual
properties of the object can vary significantly depending on
the atmospheric conditions and distance. Some body parts
that may be important for object recognition, such as legs, can
be very tiny or blend into the background, especially when
recording from a long distance.

IV. EXPERIMENT WORKFLOW

A. PROBLEM FORMULATION

The experiment aims to detect people in thermal images and
videos taken in different weather (clear weather, heavy rain,
and fog) and recording conditions during surveillance of a
protected area, using a real-time object detector.

We examined some of the object detectors with state-of-
the-art results on RGB images and choose a detector for
further experiments that achieves the best results on thermal
images in terms of average precision and inference speed.
Namely, we considered the Faster R-CNN [50], SSD [6], Cas-
cade R-CNN [51], YOLOv3 [11] and FCOS [52] detectors
that achieve the best results today for person detection, and
chose YOLOV3 as the one that best suits our goal and can be
customized to thermal images.

Although thermal images significantly differ from RGB
images both in color and detail, it is expected that individual
layers of RGB images still sufficiently resemble the thermal
image so that the shape features that the model learned to
extract on RGB training data should still be useful for thermal
images.

To build the model, we needed an appropriate thermal
imaging database taken during the surveillance of supervised
areas such as state borders. As there was no adequate public
database, we created a thermal imagery database of surveil-
lance scenes considering different shooting conditions and
prepared data for supervised machine learning.

B. DATASET CREATION

Depending on the goals and tasks that should be solved,
researchers can either use existing datasets or if a suitable
dataset doesn’t exist, create a specialized dataset that better
fits the set goals [14], [53]. Since the existing thermal imag-
ing datasets, e.g. OTCBVS Benchmark Database [54] and
CASIA Infrared Night Gait Dataset [55] didn’t fully match
the intended goal of detecting persons in various security sit-
uations such as unauthorized movement in monitored areas,
sneaking around protected objects and border crossing in the
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night at both favorable and unfavorable weather conditions,
a custom dataset was recorded and prepared to simulate these
real-life scenarios.

For the task of human detection in thermal images and
videos, we use our IR thermal image dataset, named UNIRI-
TID, that simulates realistic conditions for application in
detection and recognition systems in difficult weather. All
scenarios in the dataset are recorded in the night and during
the winter period. Weather conditions in the recordings vary
from clear weather, fog, and heavy rain [56].

The people in the recordings simulate intentional but unau-
thorized entry or walk through the area under surveillance,
and thus move with different body positions and movement
speeds at different distances from the camera such as crawl-
ing, hunched, or normal walking and running. In some cases,
the persons were accompanied by dogs, so that the abil-
ity of the person detector to discriminate between a person
and other objects with similar thermal characteristics can be
tested. Since different weather conditions determine what is
discernible in recorded images and videos, different scenarios
were defined for each weather type, as follows.

The clear weather scenario serves for training the person
detection model, as well as to estimate the maximum distance
to the camera at which one can detect the person in the video
with the naked eye. The reference distance for the normal lens
was 110 m, while recordings at larger distances were done
with a telephoto lens.

The dense fog scenario is used to prepare a test set for
testing the robustness of the human detection model trained
only on clear weather images (video) to changing recording
conditions and to examine the use of a human detection model
in as realistic as possible real-world surveillance conditions.
As with the clear weather scenario, the reference ranges of
the camera were determined in fog with low visibility, here
the reference distances are 30 m.

The heavy rain scenario is also used for testing the robust-
ness of the model trained on clear weather images, as well
as increasing the coverage of different realistic conditions
that can arise in monitored areas such as the state border.
The reference distance at which the camera can record in
rainy weather and weather with high humidity was examined
from 30 to 215 m.

In all three scenarios the people were recorded while walk-
ing, running, and sneaking (walking while hunched).

To test the detector’s ability to distinguish between human
and non-human objects that may have similar thermal char-
acteristics as humans, we created an additional dataset based
on recordings that contained both humans and dogs.

1) DATA COLLECTION

The recording was done in several sessions during the winter-
time using the FLIR ThermalCam P10 LWIR thermal imag-
ing camera mounted on a tripod at a height of about 140 cm,
with the standard 24° x 18° field of view (FOV) lens and with
FLIR 7° FOV Telephoto Lens (P/B series) [57]. The camera
sensor captures a thermal resolution of 320 x 240 pixels,
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which was upscaled to 1280 x 960 pixels using an external
video recorder.

For the distance measurement, we used the ViewRanger
application [58] installed on the CAT S60 [59] GPS-equipped
smartphone.

FIGURE 7. Aerial view of the recording field. Map data: Google, Europa
Technologies.

a: CLEAR WEATHER

The clear weather recording was done out in a field bordering
a small forest (Fig. 7), to include the situation when people
are hiding behind trees and bushes. The air temperature was
about 2 °C, in night conditions with good visibility and
without affecting atmospheric conditions. A single person
and a group of three persons were recorded as they walked
away from the camera from 50 to 110 m, then turned and
moved across the camera’s field of view at a distance of 110
and 165 m.

At 110 m, people were recorded while running in addition
to normal walking, while for the one-person case, walking on
all fours, crawling, and lying on the ground were recorded as
well (Fig.9). Moving across the camera FOV at 165 m, people
were recorded walking and running upright, and walking
and running while hunched. At 165 m, the recordings were
done only with the telephoto lens, since the images recorded
using the standard lens were of too low quality to detect
and recognize a person with the naked eye. At 100 m, both,
standard and telephoto lenses were used (Fig. 8).

FIGURE 8. Comparison of images taken in the clear weather and at the
same distance with (a) standard thermal camera lens, (b) using telephoto
lens [56].

b: FOGGY WEATHER

Recording in the foggy weather was the most demanding
since the fog disperses LWIR radiation, due to the high den-
sity of waterborne particles in the air and significantly reduces
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FIGURE 9. Comparison of images taken at the clear weather using
standard lenses - one person - changing positions: (a) normal walking,
(b) four-leg walking; (c) lying on the ground - left side of the person;
(d) lying on the ground - head in the direction of the camera [56].

the visibility for the thermal imaging camera compared to
other atmospheric conditions [60]. For this reason, in very
dense fog, people at distances of over 50 meters were not
visible at all in the recordings and thus it was not possible
to replicate the clear weather scenarios. After reviewing the
preliminary recordings, distances from 0 to 30 m and at 50 m,
were selected for the foggy weather scenario, using only the
telephoto lens. Again, a single person and a group of three
persons walked away from the camera from O to 30 m, then
crossed the camera’s field of view walking normally upright,
walking hunched and running. The recording was done on the
asphalt road in the forest. The air temperature was about 2
degrees Celsius, while the visibility was less than five meters
due to dense fog.

c: RAINY WEATHER

The recording in the heavy rain was done at a site that
provided the ability to record at distances of over 165 meters.
An individual and two persons were recorded while walking
normally, running, both upright and hunched at 30, 70, 110,
140, 170, 180 and 215 m from the camera. At 215 m, a
recording was possible only with a telephoto lens, while for
all other distances both standard and telephoto lenses were
used.

d: HUMAN - NON-HUMAN DATASET

A part of the dataset was created to test the ability of the
detector to distinguish human and non-human objects that
may have similar thermal characteristics, such as animals, and
in this case, a dog. The recordings where a dog accompanied
the persons were made in dense fog only.

The human-non-human data subset consists of 5,420
images, 3,552 of them recorded in the clear weather, and
1,868 in the fog. The clear weather recordings correspond to
the previously mentioned clear weather scenario (recording
at distances of 110 m, walking from 110 to 165 and 165 m
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using standard and telephoto lenses with subjects changing
movement speed (normal, running) and body positions.

In the dense fog, the recording was done at distances
from O to 30 and 50 m, using standard and telephoto lenses,
as previously for the fog scenario. The volunteers changed
body positions and movement speed, and hid in the woods,
while the dog behaved as normally — changing movement
speed and body positions (walking, running, jumping. . .).

By class, the Human—Non-Human dataset contains 2,685
images annotated with only the Person class, 1,497 images
are annotated with both human (person) and Non-human
(dog) classes, and 1,238 images without either persons or
animals and without annotations (negative examples).

2) DATA PREPROCESSING AND ANNOTATION

From all recordings, about 20 minutes of material from the
clear weather scenario, 13 minutes from the fog scenario,
and about 15 minutes from rainy weather were selected
for further processing. The longer videos were cut into
sequences according to the steps in previously defined sce-
narios and from these sequences individual frames were
extracted, resulting in 11,900 images for the clear weather,
4,905 images for the fog, and 7,030 images for the rainy
weather scenarios.

Of all the frames, 6,111 were selected for manual annota-
tion so that they could be used to train the supervised model.
When selecting the frames, it was taken into account that
the selected frames include different weather conditions so
that in the set there were 2,663 frames shot in clear weather
conditions, 1,135 frames of fog and 2,313 frames of rain.

The annotations were made using the open-source Yolo
BBox Annotation Tool [61]. It is a tool that runs within any
web browser and it can simultaneously store annotations in
the three most popular machine learning annotation formats
YOLO [9], [62], VOC [63] and MSCOCO [64], saving time
in later phases because no subsequent conversion is required
in the needed format. The image annotation consists of a
centroid position of the bounding box around each object
of interest, size of the bounding box in terms of width and
height, and corresponding class label (Human or Dog). After
the dataset was annotated, the machine learning model was
trained.

3) DATA ADAPTATION FOR TESTING ON BENCHMARK
DATASETS
To test the trained model on benchmark datasets such as
CVC FIR: Sequence Pedestrian Dataset [65], [66] VOT-
TIR2015 [67], OTCBVS Benchmark Dataset Collection [54],
Terravic Motion IR Database [68], that all contains exclu-
sively grayscale thermal images (Fig. 10), we had to do a
domain adaptation. We applied a simple method and trans-
formed our basic pseudo-colored RGB images into grayscale.
A similar domain adaptation was applied in [69], [70].

The grayscale conversion was done to better reflect the var-
ious representations of thermal images in different datasets
and to better simulate the realistic conditions in which such a
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FIGURE 10. CVC IR 09 image example (up left); VOT-TIR2015 dataset
image examples (upright, middle); OSU thermal dataset form OTCBVS
Benchmark Dataset Collection (down left); Terravic motion dataset (down
right).

FIGURE 11. Original thermal image (left) is converted into greyscale in
two ways: the hotter areas are represented with bright shades (middle),
and the hotter areas are represented with darker shades (right).

model would be implemented. Since people may be warmer
or cooler than the background our basic pseudo-colored RGB
images were converted into greyscale in two ways. In the first,
the hotter areas are represented with bright shades (Fig, 11.
middle), and in the second one, the hotter areas are repre-
sented with darker shades (Fig, 11. left). In this way, the
6,111 images in the dataset were supplemented with 12,222
grayscale images.

Summary data about the collected and annotated subsets of
UNIRI-TID dataset is shown in Table 2.

C. OBJECT DETECTOR

In order to select the neural network architecture to be used
in further research, we conducted a preliminary experiment
to test the performance of state of the art RGB CNN-based
object detectors for person detection on our custom dataset.
We have retrained the Faster R-CNN detector[50], SSD
detector [6] with the Inception v2 [71] backbone, FCOS [52]
with ResNet 50 backbone [72], Cascade R-CNN [51] with
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TABLE 2. Subsets of UNIRI-TID dataset.

Camera Number of Object
Dataset subset distance images class

Clear 50-160 m 2663 Human
Rain 30-215m 2313 Human
Fog 0-30 m, 50m 1135 Human
All 0-215m 6111 Human
Human

Human-non-human 0-215m 5419 and dog
Transform 30-215m 18333 Human

TABLE 3. Comparative results for person detection on thermal images.

Inference
Model AP time FPS
Faster RCNN 98,86% 0,141 7,097
SSD 94,02% 0,063 15,794
FCOS 97,05% 0,048 20,790
Cascade RCNN 98,80% 0,223 4,480
YOLOv3 97,93% 0,036 27,472

ResNet 101 [72] backbone, and YOLOv3 [11] without chang-
ing the original architecture on 4,270 thermal images from
our dataset for 40000 iterations. Testing was performed on
1,841 images from the test set and comparative results are
given in Table 3.

All examined models perform well with comparable results
in terms of AP (Average Precision), and the top three models
are Faster RCNN, Cascade RCNN, and YOLOv3. However,
due to its architecture, YOLOV3 is significantly faster, has
a processing speed of 27,5 consecutive frames per second
(FPS), and has a shorter inference time of the top 3 models.
Assuming the video has a frame rate of at least 24 (FPS) to
have a smooth appearance, only YOLOV3 can process the
video sequence “‘online’’ while other models don’t have that
capability because they are too slow. Therefore, we have used
YOLOVS3 further in our experimental work.

1) YOLO OBIJECT DETECTOR
YOLO is an object detector that uses a single pass to detect
the potential regions in the image where certain objects are
present and to classify those regions into object classes. The
authors [9] framed the object detection task as a regression
problem from image pixels to coordinates of objects’ bound-
ing boxes and associated object class probabilities. Till now,
the authors presented three versions of the YOLO detector
and in this work, the YOLOV3 [11] network is used.
YOLOV3 [11] uses a network consisting of 53 convolu-
tional layers of 3 x 3 and 1 x 1 filters, with some short-
cut connections between layers (residual blocks) for feature
extraction, Fig. 12. Instead of the max-pooling layers that
are typically used in CNNs to decrease the dimension of the
results from a convolutional layer, the convolutional layers
with a stride of 2 are used to down sample the feature maps,

8

to prevent the loss of low-level features often attributed to
pooling [11].

To better handle the detection of objects of different sizes,
YOLOV3 uses a structure similar to feature pyramid networks
to predict boxes at two additional scales. To obtain the fea-
tures for a finer scale than in the last layer, the features that
are computed in a previous layer with finer feature maps are
combined with up-sampled features computed further in the
network at a coarser scale (Fig. 12). From these features,
the box predictions for the finer scale are computed. This
is repeated for the smallest scale, merging the features of a
convolutional layer with a bigger feature map with previously
computed features at a medium scale. At each scale, 3 sets of
box predictions are generated for each location in the feature
maps.

Final classification in YOLOv3 uses logistic classi-
fiers instead of soft-max in the final layer, with binary
cross-entropy loss during training, so in this case, multiple
class labels may be assigned to a single detected object
simultaneously, which can be useful in cases where partially
overlapping classes exist in the data, e.g. vehicle and automo-
bile [11].

V. EXPERIMENT SETUP

In the experiment, the application of the YOLOv3 detec-
tor in surveillance applications when using thermal imaging
for human and non-human (animal) detection in different
weather conditions is tested.

First, we recorded video materials and prepared an anno-
tated database framework for supervised learning of a model
for detecting a person when moving in real-life scenes at
different distances and in different weather conditions.

As the baseline model, the original YOLOv3 network with
input size 608 x 608, referred to as bY, is used. This model
was pre-trained on the MS COCO RGB image dataset [73] to
detect a large number of object classes.

The baseline performance was compared with the
YOLOvV3 network that was additionally trained on thermal
image data for the class Person, here called tY. For the train-
ing and testing purposes, the YOLOV3 detector architecture
within the Darknet framework [62] was used, (available in the
GitHub repository [74]). The training was done on images
from our dataset, described in detail before, where 4270
images were used for training the model, and 1841 images
that were not part of the training set were used for testing.
Both the custom trained model referred to as tY and the
baseline model referred to as bY are tested using the same
test set. Then, an experiment was conducted to determine
if a smaller training set can achieve good detection results.
A model that is trained on only 10% of the data of the Clear
subset is referred to as tY_clear10, on 20% tY_clear20, and
a model trained on 80% of the data tY_clear80.

Collecting data in the case of fog and rain is very demand-
ing and it is much more difficult to collect sufficient data
for training than in the case of clear weather, and therefore
a model referred to as tY_clear was trained only on clear data
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FIGURE 12. YOLOv3 network architecture.
subset of the training set for tY and tested on fog and rain TABLE 4. List of trained models with salient data.
data to evaluate its generalization capabilities in bad weather
conditions Model Additional Train  Testing part of  Test
: . training on images UNIRI-TID images
Furthermore, an experiment was performed on the UNIRI-TID
Human—Non-Human dataset where the goal was to detect and by ol a1
distinguish two classes, Person and Animal (dog). The dataset i
used for training and testing consisted of 5,419 images and tY All subset 4270 All 1841
for. tbls experlme?nt, the dataset was divided 80:20 between €Y _clear10 10% of Clear 266 90% of Clear 2397
training and test images. subset subset
Table 4 lists the models we trained and tested in this
. 1 K and th di .. d tY_clear20 20% of Clear 532 80% of Clear 2131
'experlme?nta work and the corresponding training and test set subset subset
information.
. . . . . 0, 0,
The training was performed for 40000 iterations with a tY_clear80 80 /;Ju(:)fsglear 2131 20/;)u(;3fsgtlear 332
learning rate of 0.001, momentum 0.9, and decay 0.0005.
During training, data augmentation was used in the form of tY_clear 70% ‘;fdear 1862 All 1841
. . . . subset
random image saturation and exposure transformations, with
maximum factors of 1.5, and with random hue shifts by at tY_hNh Human- 4335 Human- 1084

most 0.1. The input image size was kept at 608 x 608 pixels
without multiscale training.

Finally, to test the generalization onto different datasets,
a model referred to as tY_transform was tested on widely
used and well-known thermal imaging datasets mentioned
earlier. The tY_transform model was trained using a subset
of the images from our dataset in all weather conditions,
artificially augmented by grayscale images to better simulate
conditions in which a model would be implemented. The total
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nonhuman subset nonhuman subset

number of images used for the training tY_transform model
was 11,437.

EVALUATION MEASURE

Standard accuracy metrics for the tasks in the domain
of computer vision are accuracy, precision, recall, and
F-measure [75], [76]. For the object detection task, the mean
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average precision (mAP) measure is also used to evaluate
the performance of the models [77]. The detection results are
compared with the ground truth, and detection is considered
true positive if the intersection-over-union (IoU) score of
the detected bounding box and the corresponding ground
truth bounding box is 50% or larger. An example of pos-
itive and negative object detection concerning intersection-
over-union (IoU) score in case of person detection is shown

in Fig. 13.
1 ' rl
v ‘A‘ AR
I0U250% 10U<50% 10U<50

FIGURE 13. Visual negative (left) and positive (right) representation of
loU criteria.

Given an unseen image, the detector returns the bounding
box coordinates of the detected objects, the corresponding
class label, and a confidence value that indicates how certain
the detector is about the detection. The precision-recall curve
for a class, here Person, is obtained by varying the confidence
threshold from 0 to 100% and calculating the precision and
recall at each point. When the confidence threshold is 0, the
recall is at its maximum value, while the precision is at its
lowest, and the opposite is true for the threshold at 100%. The
AP score is then the area underneath the obtained precision-
recall curve.

VI. RESULTS AND DISCUSSION
Below are the person detection results for the average preci-
sion for all tested scenarios.

A. HUMAN DETECTION IN ALL WEATHER CONDITIONS
USING YOLO ON THERMAL VIDEOS

Fig. 14 presents the precision-recall curve for the Person
class of the baseline YOLO model bY, that was not trained
on thermal images [24], and the same curve for the model
tY that was additionally trained on the thermal images from
our dataset for the class Person. The plots are computed on
the whole test set. Additional training significantly improved
the results over the baseline: the AP score achieved with the
model tY is 97.93%, while the AP score of bY is 19.63%.

The model bY achieves the 100% precision with a recall of
15.5%, while the model tY achieves the same precision with a
recall of approx. 50%, meaning that the tY model can detect a
lot more people present in the images without false positives
in comparison to the base model.

Looking separately at the performance in different weather
conditions, the model achieves the AP score of 97.85% for
clear and foggy weather, while in the rain the AP score is even
better at 98.08%. With 100% precision, the tY model achieves
a 35% recall in the clear weather, 75% in the rain, and
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FIGURE 14. Precision/recall curve for baseline YOLO model, bY, and for
custom trained YOLO model, tY.
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FIGURE 15. Precision/recall curve for model tY in different weather
conditions.

50% in the fog. Fig. 15 shows the complete precision-recall
curves for the tY model computed on the parts of the test set
corresponding to different weather conditions.

Some examples of detection results with both bY and tY
models are shown in Figs. 16 to 21 below, with different
distances of subjects from the camera and in different weather
conditions. In Fig. 16, the tY model has correctly detected
the three persons in the image even if they were about 150 m
away from the camera and only a few pixels tall, while the bY
model missed two out of three persons present. This may still
be an unexpectedly good result in this case because the silhou-
ettes of persons are tiny and the relatively small temperature
contrast between the persons and the surrounding vegetation.

Generally, images that were taken in the rain (Figs. 17-19),
show a larger temperature difference between the cold envi-
ronment (blue to green tones) and the warm person (shown in
red), making it easier to detect persons, at least visually. In the
example in Fig. 17, captured in the rain at about 70 m, the tY
model correctly detects the person, however, the bY model
falsely detects a TV monitor and misses the person, even
though the temperature contrast is higher than in example in
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FIGURE 16. Example results of person detection using the bY (left) and tY
model (right). Images recorded with a normal lens in clear weather,
distance 110-160 m.

FIGURE 17. Results of person detection (hunched walk) using bY model
(left) and tY model (right). Images recorded with a normal lens on rain
condition, 70 m distance.

FIGURE 18. Results of person detection (hunched walk) using bY model
(left) and tY model (right). Images recorded with a telephoto lens in the
rain, 100 m distance.

FIGURE 19. Results of person detection (running) using the bY model
(left) and tY model (right). Images recorded with a telephoto lens in the
rain, 215 m distance.

the Fig. 16. Similar results are commonly obtained in the case
of a hunched walk, Fig. 18 or running, Fig. 19.

In other weather conditions, the temperature difference is
often smaller, and the detection by the heat map is much
harder, as in the fog example (Fig. 20. Here, the tY model
has detected one of the two people present on the scene,
Fig. 20 (right), while the bY model could not detect any
person, Fig. 20 (left).
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FIGURE 20. Results of detection using the bY model (left) and tY model
(right). Images recorded with a telephoto lens in the fog, 50 m distance.

002943

FIGURE 21. Results of person detection on images recorded with a
telephoto lens in clear weather condition, 110 m distance: normal walk
(left), running (right).

FIGURE 22. Results of person detection on images recorded with a
normal lens in foggy weather: crouched walk, 50 m (left), standing still,
<30 m (middle), normal walk, <30m (right).

Figs. 21 to 22 show additional examples of detection with
the tY model in different scenarios. It can be noted that the
model manages to detect people regardless of the mode of
movement even when the thermal contrast between the person
and the environment was low or at a large distance. The model
also successfully distinguished between persons and other
objects with similar contours or temperatures, such as tree
trunks, detecting persons, and no false positives (Fig. 21, left).

Fig. 22 (left) is an example of a positive detection in
the case of hunched movement in the fog. The presence of
animals, as in this case the dog in Fig. 22. (right) did not
confuse the detector which correctly detected both persons
present. In this experiment, the model was not trained with
the Non-Human class.

In the rain conditions (Fig. 23), there was a large tem-
perature contrast between the person and the environment,
especially when the telephoto lens was used (Fig. 23
(right)). The tY detector has successfully detected people
regardless of body posture or camera distance. It is clear
that the temperature contrast between person and environ-
ment varies greatly, even for the same weather conditions
(Fig. 23. middle) and c)). Both Figs. 23. (middle) and (right)
are recorded in the rain on the same day but in Fig. 23. (right)
the environment is colder than the person and shown with blue
and green while in Fig. 23 (middle) the immediate surround-
ings of the person seem to be warmer and are represented with
tones as the person.

11



IEEE Access

M. Kristo et al.: Thermal Object Detection in Difficult Weather Conditions Using YOLO

FIGURE 23. Results of person detection on images recorded in the rainy
weather: 30 m normal lens (left), 70 m normal lens (middle), 30 m
telephoto lens (right).
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FIGURE 24. mAP and Loss function chart for Clear dataset with training:
testing ratio 80:20.

The results given in figs. 21-23 and the presented exam-
ples show that additional training of the original YOLO
model (bY) for the human detection (class Person) in thermal
imaging results in the new tY model that achieves excel-
lent results of detection in different weather conditions. The
detection has proved successful even when persons were in
the distance or tried to avoid detection by sneaking or walking
in a hunched position.

B. PERFORMANCE AGAINST DIFFERENT TRAINING SET
SIZE

To see how the size of the training set affects the detection
performance, additional experiments with a varying number
of training images were performed. We intended to examine
the results by taking 80%, then 70% and so successively down
to 10% of the data in the Clear subset for training. The rest of
the data in the Clear subset is used for testing.

We randomly took 80% of the data from the Clear subset
for training set in the first case, 20% in the second case and
10% in the third case but we did not examine other divisions
of the sets as it soon became obvious that already with 10% of
the data in the training set comparative results were obtained
as with 80%. Fig. 24 shows the values of the mAP and loss
functions for model with 80:20 training/test split and Fig 25.
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FIGURE 25. mAP and loss function chart for Clear dataset with train:test
ratio 10:90 (a), 20:80 (b).

shows the same functionality for models with 10:90 and 20:80
splits. The models achieved no significant performance gains
after about 1600 iterations, showing that in this case, training
of the YOLO model is possible on a small set of training
images with a small number of iterations, without losing
much of the performance of the model.

C. HUMAN DETECTION IN ALL WEATHER CONDITIONS
USING YOLO MODEL TRAINED ON CLEAR WEATHER
Model tY_clear is trained only on a clear weather subset
of the training set of tY model that contains 1862 images.
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FIGURE 26. Precision/recall curve for the baseline YOLO model by,
custom trained YOLO model, tY and model trained only on clear weather
images, tY_clear.
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FIGURE 27. Precision/recall curve for model tY_clear in different weather
conditions.

The generalization capability of the tY_clear is presented in
Fig. 26 and compared to performances of models bY and tY
in terms of a precision-recall curve for the Person class on the
whole test set.

The basic YOLO model bY was not trained on thermal
images, so the model trained only on clear weather tY_clear
achieved significantly better results than the bY model with
an AP score of 79.39% for the class Person compared to AP
score 19.63% of the model bY. On the other hand, since less
data was used for training the model tY_clear and the data of
rain and fog were excluded from the training set, the model
tY_clear does not perform as well as the model tY with AP
score 97.93%, trained on all weather conditions.

The experiment has shown that additional model learning
on a set of thermal images significantly improves perfor-
mance results, but also that the data collected during clear
weather can be successfully used in rainy weather condi-
tions, Fig. 27. The results show that fog has a much greater
impact than rain when it comes to detecting people in thermal
imaging.
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Lot |
FIGURE 28. Detection and recognition of humans and an animal in

thermal images in dense fog, at the distance of 30 m, with changing body
positions: normal walk (left), running (right).

=

FIGURE 29. An example of the detection of humans and animals in dense
fog at different distances of persons and animals.

D. HUMAN - NON-HUMAN RECOGNITION IN THERMAL
IMAGES AND VIDEOS

For the task of detection of two classes, person and dog,
the achieved mAP after training was 97.98%. For the Person
class, the average precision was 97.86%, while for the Non-
Human class the AP was 98.10%. In this case, Recall was
98%, and F1 score 97%. The obtained results show that
YOLOvV3 with additional training fully satisfies the basic
requirements of the experiment, which is detection and dis-
tinction between humans and animals on thermal images and
video. Some example results of detection and recognition
are shown in Figs. 28 and 29. On the presented examples it
can be seen that different distances, different visibility, and
body positions did not affect the detection and recognition of
humans and animals in thermal images. On the test set, there
was a small number of false-positive recognition, that does
not affect the applicability of the detector, as a security system
based on the thermal imaging could track a detected object for
at least a few seconds before sounding alarm or an increased
confidence threshold could be used if false positives are to be
avoided.

E. BENCHMARK TEST OF TRAINED YOLO MODEL
The detection performance of the tY_transform model trained
on our dataset was tested on different publicly available
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TABLE 5. Number of images in benchmark datasets for person detection.

TABLE 7. Detection metrics for tY models trained on benchmark datasets.

Dataset Number Camera type/
of images Resolution
ASL ETH FLIR [78] 4381 FLIR Tau 320/324%256
pixels
LITIV2012 Dataset [79] 6325 320x240 pixels
KAIST Multispectral Pedestrian 3500 FLIR-A35/640x480
Detection Benchmark [20] pixels
OSU Thermal Pedestrian Database 6799 Raytheon 300D/360 x
from OTCBVS Benchmark Dataset 240 pixels
Collection [54]
Terravic Motion IR Database [68] 20255 320x240 pixels
CVC-09: FIR Sequence Pedestrian 10006  FLIR Tau 2/ 640 x 512
Dataset [65, 66] pixels; IDS UI-3240CP/
1280 x 1024 pixels
VOT-TIR2015 Dataset [67] 7279 320%240 to 1920x480
pixels
TABLE 6. Detection metrics for tY_transform model.
Dataset mAP  Avg. Recall Fl1
10U score
ASL ETH FLIR [78] 0.36 0.38 0.27 0.35
LITIV2012 Dataset [79] 0.71 0.44 0.75 0.64
KAIST [20] 0.35 0.19 0.69 0.36
OSU Thermal Pedestrian [54] 0.84 0.50 0.87 0.72
Terravic Motion IR Database [68] 0.97 0.66 0.98 0.92
CVC-09: FIR Pedestrian [65, 66] 0.49 0.23 0.66 0.42
VOT-TIR2015 Dataset [67] 0.83 0.54 0.86 0.77

datasets, namely, ASL_ETH_FLIR dataset [78], LITIV2012
Dataset [79], KAIST Multispectral Pedestrian Detection
Benchmark [20], OSU Thermal Pedestrian Database from
OTCBVS Benchmark Dataset Collection [54], Terravic
Motion IR Database [68], CVC-09: FIR Sequence Pedestrian
Dataset [65], [66], and VOT-TIR2015 Dataset [67].

The basic information about the datasets is shown in
Table 5. and the achieved detection metrics are shown in
Table 6.

It can be noted that the best results of 97% mAP and
92% F1 score tY_transform model has achieved on the Ter-
ravic motion dataset since the thermal silhouettes from that
set are most similar to the images from our original set.
Slightly worse, but still very good detection results of about
83% mAP and 77% F1 score, the model achieves on VOIT-
TIR2015 and OSU Thermal datasets, which indicates the
fact that the model generalizes well, especially when taking
into account the specificity of thermal images, i.e. significant
difference in silhouettes of persons depending on distance and
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Dataset mAP  Avg. Recall Fl1
10U score
ASL_ETH_FLIR 075 0.76  0.79 0.58
LITIV_2012 083 0.84 087 0.69
KAIST 0.63 0.69 0.70 0.49
OSU Thermal Pedestrian 0.86 0.67 0.89 0.89
Terravic 096 095 095 0.75
CVC_IR 0.62 0.66 0.69 0.52
VOT-TIR2015 0.67 0.64 0.75 0.65
mAP
1
0.8
0.6
0.4
0.2 I
0
Y\&% S @\é\ é@q} < 05?& &
& & @ &
& o 06}5 < ¢ QO/\
mtYl..7 tY_transform

FIGURE 30. mAP results on different datasets for the model trained on
our dataset (tY_transform) and each dataset (tY1...tY7).

FIGURE 31. ASL ETH FLIR detections.

shooting conditions. The worst results of about 35% mAP
were achieved on the ADT ETH and KAIST datasets which
have significantly different recording positions, shooting dis-
tances, and shooting conditions.

Additionally, to be able to more credibly validate the per-
formance of the tY_transform model on benchmark thermal
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FIGURE 32. CVC IR 09 (up left); KAIST dataset (up right); LITIV 2012
(down) detection examples.

FIGURE 33. OSU thermal (up); Terravic motion dataset (down) detection
examples.

image datasets, we performed an additional comparative
experiment. We trained and tested the basic Yolo model
tY1...tY7 on each of the thermal sets from Table 5 in a train:
test ratio of 10:90 for 20000 iterations. The achieved results
when the model was trained at the same set at which it was
tested are given in Table 7.

It is expected that the models would achieve better results
when trained on images from the original set from which the
images for testing were extracted than when trained from a
completely different set as in the case of the tY_transform
model. This proved to be true for those sets that are very
different from our set of images such as ASL ETH and KAIST
and where the tY_transform model did not achieve good
results. However, it is interesting that on the sets where the
tY_transform model achieves good results, it achieved similar
or even better results as the model learned on the original set.

The comparative results of models tY1...7 trained at the
original set and tY_transform model trained at our set for
mAP metrics are shown in Fig. 30.
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FIGURE 34. VOT-TIR2015 dataset detection examples.

Some detection examples on images from considered
datasets are shown in Figures 31.-34.

VIi. CONCLUSION

In this paper, the performance of common deep learning
methods that are successful for object detection and recogni-
tion in RGB visual images was tested on thermal surveillance
scenarios. The experiment was conducted on a custom dataset
captured during the winter in different weather conditions
(clear weather, rain, fog), during the night, and with different
distance from the camera, ranging from 30 m to 215 m. The
movement of persons varied from normal walking, running
to trying to stay out of sight by sneaking or walking hunched
to simulate illegal movements around the border and in pro-
tected areas.

To select a proper detector for the detection of humans
in thermal images, we made a preliminary examination of
the selected state of the art object detectors such as Faster
R-CNN, SSD, FCOS, Cascade R-CNN, and YOLOvV3 that
achieve excellent detection results in RGB images. All mod-
els were additionally trained for the person class on a sub-
set of thermal images from our dataset without any change
od original architecture. The R-CNN, Cascade R-CNN, and
YOLOV3 detectors achieved similar detection results in ther-
mal images but YOLOv3 was significantly faster and was
used further in the experiment.

The performance of the original YOLOv3 network trained
on the COCO RGB dataset was used as the baseline model
(labeled bY) and was compared to a model additionally
trained for the person class on a subset of our thermal image
dataset.

Despite thermal images being very different in appearance
from the images recorded in the visible spectrum, it was
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assumed that the features that YOLO has learned on the
COCO dataset of visual images for the class Person will
still capture enough shape features that are similar in thermal
images and thus provide a reasonable baseline for detection
in thermal images as well. However, the original YOLO
model (bY) achieved the average precision (AP) for the Per-
son class of only 19.63% in thermal images with a recall of
15.5% at 100% precision, a significantly lower result than the
reported AP of about 90% for the Person class in the RGB
images. This model could still recognize persons in a number
of thermal images, so it served as a good starting point for
training a model specifically for thermal imaging.

A model (labeled tY) was trained on a set of
about 3000 thermal images from our thermal image dataset,
and achieved significantly better results on the test set, with
an AP score of 97.93% for all weather conditions. The
modestly sized training set proved to be sufficient for achiev-
ing excellent results of detection with all tested scenarios,
with different weather conditions, pose, and camera distance
variations. It was also showed that data collected during
clear weather can be successfully used for training the model
(labeled tY_clear) that perform well, with AP almost 100%
in clear and rain weather condition.

Also, a model was trained to detect both Human and Non-
Human objects (here dogs) in thermal images and achieved
the mAP score of 97.98%, indicating the possibility of using
this or similar CNN models for the development of a stan-
dalone system for the automatic monitoring of protected
objects and areas.

Additional training of the YOLOv3 model has shown that
it is possible to obtain a reliable model by using a rela-
tively small number of images and with a small number
of iterations, which greatly shortens the required training
time. In addition, the trained YOLOv3 model shows good
generalization properties with respect to the results achieved
by testing on external image sets. An even better model can be
obtained by combining all the sets used in this paper, which
will further expand the set with different thermal silhouette
representations, which in the case of training models for
detecting persons in thermal images is crucial to achieving
extremely reliable results for model implementation in real-
world conditions.

In the future work, we plan to further examine the perfor-
mance of person detection in other weather conditions such as
exceptionally hot weather and extend the test of non-human
objects with other potentially confusing examples such as
wild animals.

Finally, we plan to examine the possibility of using a simi-
lar detector for the task of human action recognition (running,
walking, hunched walking, four-leg walking, etc.), as well for
the task of gait recognition.
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