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Abstract: Automatic image annotation deals with automatically assigning useful keywords to an unlabelled image. 

The major goal is to bridge the so-called semantic gap between the available image features and keywords 

that people might use to annotate images. Although different people will most likely use different words to 

annotate the same image, most people can use object or scene labels when searching for images.  

We propose a two-tier annotation model where the first tier corresponds to object level and the second tier 

to scene level annotation. In the first tier, images are annotated with labels of objects present in them, using 

multi-label classification methods on low-level features extracted from images. Scene level annotation is 

performed in the second tier, using an inference engine of the fuzzy knowledge-representation scheme 

based on the Fuzzy Petri Net (KRFPN) and the object labels obtained at the first tier. The scenes and object 

classes are graphically represented by places in the KRFPN scheme and the relationships between these 

classes are represented by transitions. The inference engine of the KRFPN supports scene recognition, 

efficient inconsistency checking of object labels, as well as inference of more general concepts.  

The proposed model was experimentally tested for annotation of a dataset of outdoor images and the results 

were compared to the published results obtained on the same image collection. Different subsets of features 

composed of dominant colours, image moments, and GIST descriptors as well as different classification 

methods (RAKEL, ML-kNN and Naïve Bayes) were tested in the first tier. Due to the fuzzy-knowledge 

representation scheme, the obtained image annotation is enriched with new, more abstract concepts that are 

close to the concepts people use to interpret these images. 

 

1. INTRODUCTION 

Image retrieval, search and organization became a problem due to the huge number of images produced 

daily. In order to simplify these tasks, different approaches for image retrieval have been proposed that can be 

roughly divided into those that compare visual content (content based image retrieval) and those that use text 

descriptions of images (text based image retrieval) [Smeulders et al. 2000, Datta et al. 2008].  

Image retrieval based on text appeared to be easier, more natural and more suitable for people in most 

everyday cases. This is because it is much easier to write a keyword based query then to provide image 
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examples, and it is likely that the user does not have an example image of the query. Also, images 

corresponding to the same keywords can be very diverse. For example, a person can search for a different 

view of the same town that looks very different to an image he already has, in which case content-based 

retrieval would not be the best choice. On the other hand, with a text query very diverse images can be 

retrieved with the same keywords, e.g. Rijeka (town, river…). 

To be able to retrieve images using text, they must be labelled or described in the surrounding text, and the 

problem is that most of the images are neither of that. Manually providing image annotation is a tedious and 

expensive task, especially when dealing with a large number of images, so automatic image annotation 

appeared as a solution.  

Automatic annotation methods deal with visual features that can be extracted from the raw image data, 

such as colour, texture, structure, etc. and can automatically assign metadata in form of keywords from a 

controlled vocabulary to an unlabelled image. The major goal is to bridge the so-called semantic gap [Hare et 

al. 2006] between the available features and the keywords or interpretation of the images that could be useful 

to humans.  

This problem is challenging because different people will most likely annotate the same image with 

different words that reflect their knowledge about the context of the image, their experience, cultural 

background, etc. However, most people when searching for images use object or scene labels. Therefore, in 

this paper we focus on automatic image annotation on scene and object levels, Fig. 1.  

Object labels correspond to objects that can be recognized in an image, like sky, trees, tracks and train for 

the image in Fig. 1. Scene labels represent the context of the whole image, like SceneTrain or more general 

City, and can be either directly obtained as a result of global classification of image features [Oliva and 

Torralba, 2001] or inferred from object labels as was proposed in our approach. 

 

   

Object labels tracks, train, cloud, sky, trees, snow, polar bear 

Scene label SceneTrain, Transportation ScenePolarbear, WildLife, Arctic 

 

Figure 1. Examples of images and their annotation on object and scene levels 

In this paper, we propose a two-tier annotation model for automatic image annotation, where the first tier 

corresponds to object and second to scene level annotation. An overview of the proposed model is given in 

Section 3 after sections with related work. The first assumption is that there can be many objects in each 

image, but an image can be classified into one scene. The second is that there are typical objects of which 

scenes are composed. Since many object labels can be assigned to an image, the object level annotation was 

treated as a multi-label problem and appropriate multi-label classification methods RAKEL and ML-kNN have 

been used. On the other hand, the scene level annotation task was performed using an inference engine of the 

fuzzy knowledge-representation scheme based on the Fuzzy Petri Net (KRFPN) and the object labels obtained 
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at the first tier. The usage of fuzzy knowledge-representation scheme reflects on the major contributions of this 

paper that are as follows: 

- use of inference engine that is integrated into the fuzzy knowledge-representation scheme for 

inconsistency checking of classification results on object level annotation and for automatic scene 

recognition; 

- use of representation model based on Fuzzy Petri Nets to graphically represent knowledge about 

domain images; 

- combination of multi-label classification and graph-based approach to image annotation;  

- adaptive two-tier annotation model in which each level can be independently used and modified. 

 

The remainder of the paper is organized as follows: In Section 4 the KRFPN fuzzy-knowledge representation 

scheme formalism is described and an example of the scheme adapted to the outdoor image domain is 

presented. The application of the fuzzy inference engine for inconsistency checking of the classification results 

at the object level of annotation and the application for scene recognition is given in Sections 5 and 6, 

respectively. The performance of the proposed two-tier automatic annotation system was evaluated on outdoor 

images considering different feature subsets (dominant colours, moments, GIST descriptors) and compared to 

the published results obtained on the same image database as detailed in Section 7. The paper ends with a 

conclusion and directions for future work, Section 8. 

2. RELATED WORK 

Automatic image annotation (AIA) has been an active research topic in recent years due to its potential 

impact on image retrieval, search, image interpretation and description. AIA approaches proposed so far can 

be divided in various ways, e.g. according to the theory they are most related to (statistical theory and machine 

learning, logical reasoning and artificial intelligence) [Deruyver et al. 2009] or semantic level of concepts that 

are used for annotation (flat or structured vocabularies) [Tousch at. al, 2012].  

Classical AIA approaches belonging to the field of machine learning look for a mapping between image 

features and concepts on object or scene levels. Classification and probabilistic modelling have been 

extensively used for that purpose. Methods based on classification like one described in [Li and Wang, 2008] 

treat each of the semantic keywords or concepts as independent classes and assign each keyword to one 

classifier. Methods based on translation model [Duygulu et al. 2002] and methods which use latent semantic 

analysis [Monay and Gatica-Perez, 2003] fall into the category of probabilistic methods that aim to learn a 

relevance model to represent correlations between images and keywords. A recent survey of research made in 

that field can be found in [Datta et al. 2008, Zhang et al. 2012]. 

Lately graph based methods have been intensively investigated to apply logical reasoning on images and 

many graph-based image analysis algorithms have proved to be successful. For image annotation, this graph is 

a conceptual graph which encodes the interpretation of the image. [Pan et al., 2004] have proposed a graph 

based method for image annotation in which images, annotations and regions are considered as three types of 

nodes of a mixed media graph. In [Liu et al. 2008], automatic image annotation is performed using two graph-

based learning processes. In the first graph, the nodes are images and the edges are relations between images, 
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and in the second graph the nodes are words and the edges are relations between words. In [Deng et al. 2009] 

authors intend to illustrate each of the concepts from the WordNet ontology with 500-1000 images in order to 

create public image ontology, the ImageNet. 

Within the project aceMedia, in [Mezaris et al. 2009] ontology is combined with fuzzy logic to generate 

concepts from the beach domain. In [Athanasiadis et al. 2009], the same group of authors has used a 

combination of different classifiers for learning concepts and fuzzy spatial relationships.  

In [Ivašić-Kos et al. 2010] a framework based on fuzzy Petri Nets is proposed for image annotation on 

object level. In the fuzzy knowledge base, nodes are features and objects. Co-occurrence relations are defined 

between objects and attribute relations are defined between objects and features.  

[Binder et al. 2013.] have proposed a method called Output Kernel Multi-Task Learning (MTL) to improve 

ranking performance by transfer information between classes. [Zhang et al. 2014] have defined a graph-based 

representation for loosely annotated images where each vertex is defined as a collection of discriminative 

image patches annotated with object category labels. The edge linking two nodes models the co-occurrence 

relationship among different objects in the same image.  

3. OVERVIEW OF THE TWO-TIER IMAGE ANNOTATION MODEL 

Images of outdoor scenes commonly contain one or more objects of interest like person, boat, dog, bridge 

and different kinds of background objects such as sky, grass, water etc. However, people often think about 

these images as a whole, interpreting them as scenes, for example, tennis match instead of person, court, 

racquet, net, and ball. To make the image annotation more useful for organizing and retrieval of images, it 

should contain both object and scene labels. Object labels correspond to classes whose instances can be 

recognised in an image. Scene labels are used to represent the context or semantics of the whole image, 

according to common sense and expert knowledge. 

The overview of the proposed two-tire automatic image annotation model using a multi-label classifier and 

fuzzy knowledge representation scheme is depicted in Figure 2. The input to the system is an unlabelled image 

and the results of automatic annotation are object and scene labels. First, from each image, low-level features 

are extracted which represent the geometric and photometric properties of the image. Each image is then 

represented by the m-component feature vector                . Obtained features are used for object 

classification. The assumption is that can be more than one object relevant for image annotation, so multi-label 

classification methods are used. The result of the image classification at the first tier is o object labels from the 

set   of all object labels. The object labels are used for scene-level classification supported by the image-

domain knowledge base at the second tier. Each scene in the knowledge base is defined as an aggregation of 

typical object classes. Therefore, it is possible to conclude which scene is most likely for the given set of 

object labels. Furthermore, chunks of knowledge, particularly those related to the relationships among objects 

and scenes, can also be used to check the consistency of object labels and to discard those that do not fit the 

context.  

The knowledge base is represented with a knowledge-representation scheme based on the Fuzzy Petri Net 

[Ribarić and Pavešić, 2009]. The proposed scheme has the ability to cope with uncertain, imprecise, fuzzy 
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knowledge about concepts and relations, as well as to make conclusions about concepts and their relations. 

Definition of knowledge-representation scheme related to image-domain and using of fuzzy inference engine 

for scene recognition and inconsistency checking follows. 

 

 

Figure 2. Framework of two-tier automatic image annotation system 

3.1 Feature Sets 

The variety of perceptual and semantic information about scenes and objects on the outdoor image could be 

contained in global low-level features such as dominant colour, spatial structure, colour histogram, texture, etc. 

Therefore, for both the object and scene level annotation we used the same features extracted from images. We 

have used a feature set made up of dominant colours of the whole (global dominant colours) and parts of the 

image (region based dominant colours), colour moments and the GIST descriptor.  

The colour histogram was calculated for each of the RGB colour channels of the whole image. Next, 

histogram bins with the highest values for each channel were selected. These bins correspond to dominant 

colours in decreasing order. After experimenting with different numbers of dominant colours (3, 6, 8, 12, 16, 

24 and 36), we have chosen to use 12 dominant colours per channel (referred to as DC) in each image as 

features for our classification tasks.  

The information about the colour layout of an image was preserved using 5 local RGB histograms, from 

which dominant colours were extracted in the same manner as for the whole image. The local dominant 

colours are referred to as DC1 to DC5. To calculate the DC1, DC2 and DC3 local features, a histogram was 

computed for each cell of a 3x1 grid applied to each image. The DC4 feature was computed on the central part 
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of the image, presumably containing the main image object, and DC5 feature on the surrounding part that 

would probably contain the background, Fig. 3. The size of the central part was 1/4 of the diagonal size of the 

whole image, and of the same proportions. The size of DC vector is 36 and the size of local DC vectors 

(DC1..DC5) is 180. Additionally, we have computed the colour moments (CM) for each RGB channel: mean, 

standard deviation, skew and kurtosis. The size of CM feature vector is 12. 

 

Figure 3. The arrangement of  a) 3x1 image grid and b) central and background regions from which the dominant 

colours features were computed 

 

The GIST image descriptor [Oliva and Torralba, 2001] that was proved to be efficient for scene recognition 

was also used as a region-based feature. It is a structure-based image descriptor that refers to the dominant 

spatial structure of the image characterized by properties of its boundaries (e.g., the size, degree of openness, 

perspective) and its content (e.g., naturalness, roughness). The spatial properties are estimated using global 

features computed as a weighted combination of Gabor-like multi scale-oriented filters. In our case, we used 

8x8 encoding samples in the GIST descriptor within 8 orientations per 8 scales of image components, so the 

GIST feature vector has 512 components. 

We performed the classification tasks using all the extracted features, in which case the size of the feature 

vector was 740. Since the size of feature vector is large in proportion to the number of images, we have also 

tested the classification performance using five subsets. 

3.2 Image Annotation on Object Level  

We attempt to label both foreground and background objects assuming that they are all useful for image 

annotation. Since we want to annotate the image with all object labels, the annotation of objects at the first tier 

is treated as a multi-label classification problem. Multi-label classification can be formally expressed as 

        , where   is a set of samples,       is a power set of set of labels   and there exists at least one 

example    that is mapped into two or more classes, i.e.         | (  )|   . 

Methods most commonly used to tackle a multi-label classification problem can be divided into two 

different approaches [Tsoumakas and Katakis, 2007]. In the first, the multi-label classification problem is 

transformed into more single-label classification problems [Madjarov at al., 2012], known as problem 

transformation approach. The aim is to transform the data so that any classification method designed for 

single-label classification can be applied. On the other hand, algorithm adaptation methods extend specific 

learning algorithms in order to handle multi-label data directly. 

For the multi-label classification task we have used the Multi-label k-Nearest Neighbour (ML-kNN) [Zang 

and Zhou, 2007], a lazy learning algorithm derived from the traditional kNN algorithm, and RAKEL 

(RAndom k-labELsets) [Tsoumakas  and Vlahavas, 2007] that is an example of data adaptation methods. The 
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RAKEL algorithm considers a small random subset of labels and uses a single-label classifier for the 

prediction of each element in the powerset of this subset. In this way, the algorithm aims to take into the 

account label correlations using single-label classifiers.  We used RAKEL with kNN and C4.5 classification 

tree as base classifiers. The base classifiers are applied on subtasks with manageable number of labels. It was 

experimentally shown that for our task the best results are obtained using RAKEL with the C4.5 as base 

classifier. We also used the Naïve Bayes (NB) classifier along with data transformation. The data was 

transformed so that each instance with multiple labels was replaced with elements of binary relation     

  between a set of samples E and a set of class labels C. A ordered pair           can be interpreted as “  

is classified into  ” and is often written as    .  For example, if an image       was annotated with labels 

        {              }                 , it was transformed into three single-label instances          

                  .  

4. A FUZZY KNOWLEDGE-REPRESENTATION FORMALISM 

The assumption is that there are typical objects of which scenes are composed, so each scene is treated as an 

aggregation of objects selected as typical, based on the used data set. Also, as scene inference depends on the 

objects that are obtained as classification results in the first tier of the system, it is useful to detect and discard 

objects that do not fit the context. The relationships between objects, particularly co-occurrence relations are 

used for this purpose. 

To model relationships between objects and scenes and relationships among objects in an image, 

knowledge-representation formalism has to be used and domain knowledge needs to be included. Considering 

that automatic object classification is subject to errors and that knowledge about concepts is often incomplete, 

the ability to make conclusions from imprecise, fuzzy knowledge becomes necessary. A knowledge-

representation scheme based on the Fuzzy Petri Net, named KRFPN, [Ribarić and Pavešić, 2009] is adapted at 

the second tier for this purpose.  

4.1 Definition of the KRFPN Scheme Adapted for Image Annotation 

The elements of the knowledge base used for interpretation of images from a part of a Corel image base 

[Carbonetto et al. 2004] are presented using the KRFPN scheme [Ribarić and Pavešić, 2009]. 

The KRFPN scheme is defined as 13-tuple:                                    ,   (1) 

where: 

  {            }     is a set of places; a function         maps a place from a set   to a concept 

from a set     used for image annotation. A   is a bijective function, so its inverse         is used in 

the schema too; set of concepts consists of object and scene labels,        ,   {Airplane, Train, 

Shuttle, Ground, Cloud, Sky, Coral, Dolphin, Bird, Lion, Mountain, etc.},    = {SceneAirplane, SceneBear, 

SceneBird, SceneElephant, SceneFox, SceneCheetah, SceneGoat, SceneLion, ScenePolarbear, 

SceneRabbit, SceneTiger, SceneTrain, SceneWolf, SceneZebra, Inland, Mountains, Sea, Seaside, Space, 

Other}. Pairs of mutually contradictory concepts are not defined, but can be added, if needed. 
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  {            }     is a set of transitions; a function         maps a transition from a set   to a 

relationship   from a set   {                                                  }. The o           

is a relationship between object classes that models the joint occurrence of object classes in the image. A pair 

                                        contains mutually contradictory relations that are defined 

between objects classes. The aggregation relationship             is defined between a scene class that has a 

role of aggregation and object classes that have the role of components of aggregation. For a relationship 

consists_of an inverse relationship  (          )              is defined. The value of a transition, 

         , corresponds to the degree of truth and confidence related to the relationship mapped to that 

transitions and is defined according to the used training dataset. The link between places and transitions is 

given with the input and output functions,             and           .  

 

  {            }     is a set of tokens that are used to define execution of a Fuzzy Petri Net (FPN). 

The tokens’ distribution within places is given as          , where      is a power set of    The initial 

distribution of tokens    defines the initial marking vector    (                   ). In our case, in the 

initial marking, a place can have no or at most one token,       {   }. A place that contains one or more 

tokens is called a marked place and it is important for execution of the transition. Additionally, each token is 

associated with a value           that corresponds to the degree of truth or confidence related to the 

concept mapped to the place where the token is. The complete information about a token    is given by the 

pair           , where the first component specifies the place where the token is located and the second one 

its value. The value of a token in an initial distribution can be set to the estimated a posteriori probability of 

the concept that is associated with that marked place. 

         is a threshold value and has influence on inference procedures. It is usually set to a low value, 

determined experimentally, in our case 0.01. 

4.2 Graphical representation of the KRFPN  

The KRFPN scheme can be represented by a bipartite directed graph containing two types of nodes: places 

and transitions. Graphically, the places      are represented by circles and the transitions      by bars. A 

token       is represented by dot within a place. The directed arcs between the places and transitions, and 

the transitions and places represent the transition input         and output         functions, respectively 

(Figure 3).  

pi pktj

d1 d2r1

c(m1)>0  f(tj)>0

m1

 

Figure 4. A generic form of a chunk of knowledge in the Fuzzy Petri Net formalism  
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In a semantic sense, each place from the set   corresponds to a concept       and any transition from set 

  to a relation     . In our scheme, elements of set   are objects and scene classes. The elements of set   

are relations between object classes and relations between object and scene classes. The assigned value       

to a token at the input place          expresses the degree of uncertainty and confidence of a concept     

mapped to a particular place   , and the transition value       corresponds to the degree of uncertainty of a 

relationship     mapped to a transition   . The assigned values implement fuzziness in the scheme and can be 

expressed by truth scales, where 0 means “not true” and 1 “always true”. 

4.3 Dynamic properties of the KRFPN  

Dynamic properties of a KRFPN are related to firing of the enabled transitions in the Fuzzy Petri Net – 

FPN, i.e. the execution of a FPN. A transition is enabled when every input place of the transition is marked, 

i.e., if each of the input places of the transition has at least one token whose value       exceeds the threshold 

value         . By firing, tokens simultaneously move from all the transition’s input places          to the 

corresponding output places         . In Figure 3, there is only one input place for the transition   ,       

   and only one output place         . After the transition firing, a new token value       at the output 

place is obtained as       (  ) (Fig. 4). Firing of a transition is in accordance with the basic firing rules of 

the original PN [Chen et al. 1990]. 

pi pktj

d1 d2r1

c(m2) = c(m1)* f(tj)>0 f(tj)>0

m2

 

Figure 5. A new token value is obtained in the output place after firing. 

The dynamic properties of the scheme are important for the definition of inference-engine. The inference 

engine on the KRFPN scheme consists of three automated reasoning processes: fuzzy inheritance, fuzzy 

recognition and fuzzy intersection. All the steps of the inference algorithms are given in [Ribarić and Pavešić, 

2009], and below is a brief description of their application for inconsistency checking and scene recognition.  

4.4 Modelling the confidence related to relationships and concepts 

Given that the mapping between concepts and image features is often unreliable, and due to incomplete 

knowledge of the concepts, uncertainty is implemented into the scheme by means of transition and token 

values. The truth values of the relationships             and             are computed using data in the 

training set, as explained below. 

To define the truth value of the aggregation relationships             it is assumed that a scene may 

contain several characteristic object classes, so the relation among the scene and object classes is an 

aggregation relationship where the scene plays the role of the aggregation and the elementary classes have the 
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role of the components of the aggregation. Analysing the data in the training set, common occurrence of object 

classes in the scene class is determined. The modified Bayes rule is used to form a set MS  that contains object 

classes that are the most representative and discriminative for the given scene class. A set MS for a specific 

scene class        is given by: 

        {      
 

     |       
 

      |      

       
   }  (2) 

        is a set of all those object classes            that participate in a scene class     with the 

posterior probability      |           exceeding the marginal value       that was experimentally 

determined. The       is the prior probability for a given object classes    obtained from the training set.  

The truth value       of the transition that corresponds to the aggregation relationship             

between object and scene classes was determined using the Bayes rule for the posterior 

probability      |             for each scene: 

            |    
    |          

∑     |   )
|  |
         

 , (3) 

where    is the transition between concepts    and    .  

In Figure 5, a part of a knowledge base is presented, showing the relationships among a particular scene 

class     and its component object classes from set         defined by the former procedure. For example, the 

degree of truth of the relation             between the “Seaside” class and its component class “water”, 

determined by (3) is 0.95. 

grass 

p11

consists_of  

t80

Seaside 

p45

tree

 p25

consists_of 

t85

water

p26

consists_of  

t86

0.40

0.95

cloud

 p6

consists_of  

t79

0.40

sky

 p20

consists_of  

t84

rock

p17

consists_of  

t82

sand 

p18

consists_of 

t83
0.38

0.85

0.90

0.47

building 

p4

consists_of

t78

 

Figure 6. Relations             among the scene “Seaside” and its object components 

 

To define the truth value of the relationship            , co-occurrence of classes    and    is analyzed. 

This can be formally defined as: 

 (  |  )   
        

     
      (4) 

The             relationship is used to validate the results of the classification in the first tier and to 

check whether the results are consistent.  

Spatial relationships between the objects like above, next to, and position such as at the top, at the bottom, 

have not been used in this experiment since these relationships could not be automatically computed from used 



11 
 

feature sets and are different from the natural relations. Although, if it turns out to be useful, spatial 

relationships as well as any new concept or relation, can easily be added to the scheme. 

5. INCONSISTENCY CHECKING USING A FUZZY-INHERITANCE 

ALGORITHM 

It is to be expected that some of the object labels obtained at the first tier of the system do not fit the 

context due to classification errors, so the facts included in the knowledge base related to the              

relation are used to check their consistency. The             relation for each obtained object class should be 

analysed using the fuzzy-inheritance algorithm. It is assumed that the class with the highest confidence 

corresponds to the context, so those classes that have a lower truth value are analysed first.  

For instance, let the unlabelled image   in Figure 6, represented with a feature vector  , be given for 

automatic annotation. The multi-label classifiers generate a set of object classes       for a given feature 

vector  , as explained in Section 3.2. For this example the obtained classification result at the first tier of the 

automatic image annotation system is      {                           }. Note that the label shuttle is 

a result of misclassification because it is not present in the image. 

 

 

Figure 7. Example of unlabelled image  

 

Every obtained object class is checked for inconsistency using the fuzzy-inheritance algorithm in order to 

verify whether there is an             relationship defined between that object class and other object classes 

in     . If the relation                 exists between checked object and all other objects in     , the 

object label is eliminated from the set     . The fuzzy-inheritance algorithm is based on the inheritance set of 

the KRFPN which is represented with a fuzzy inheritance tree, concepts that are derived from a reachability 

set of the ordinary Petri nets. The reachability set is defined as the smallest set of all reachable distributions of 

tokens starting from an initial distributions and recursively applying the firing of enabled transitions to obtain 

the immediately reachable distribution of tokens and is graphically represented by a reachability tree [Chen et 

al. 1990].  Main difference between reachability set and the inheritance set of KRFPN arise from the semantic 

interpretation of places. Namely, tokens in the output place of transitions associated with the places that 

represent the properties of concepts (here object labels of a scene) have to be frozen in order to stop further 

firing of the transitions. Also, inheritance tree can be bounded by k+1 levels, where k is the predefined number 

of levels. The root nodes    
          of the inheritance trees are formed according to the   initially marked 

places and the corresponding degrees of truth. The nodes of inheritance trees have the form   (        )    

       , l             | |, where       is the value of a token    in place   .  
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For instance, for the elementary class shuttle, the appropriate place in the knowledge-representation 

scheme is determined by the function                            , (Figure 7).  

shuttle 

p19

not_occurs_with  

t393

0.75

rock

p17
0.80

water 

p26

SceneShuttle

p47

not_occurs_with  

t396

not_occurs_with  

t394

sand 

p18

0.75

consists_of

 t95

1

not_occurs_with  

t395

tree

p25

0.90

 

Figure 8. A part of KRFPN scheme related to elementary class “shuttle”  

According to the initially marked place, the initial token distribution is created            {  }      

so that in place      there is one token   ,          . As explained, the corresponding root node of the 

inheritance tree is        {   } . The inheritance tree is formed by firing the enabled transitions (whose firing 

creates new nodes) until the condition for stopping the algorithm is satisfied or the desired depth of the 

inheritance tree is reached. Figure 8 shows the inheritance tree on the KRFPN scheme and the appropriate 

semantic interpretation of the inheritance paths for the object class shuttle. For each of the inheritance paths, 

the measure of truth is determined by the token value in a leaf node (the node in which the algorithm stops). 

The arcs of the inheritance tree are marked with the label of a transition      and the value     , for example, 

         . The generation of the inheritance trees may stop on a pre-defined level k or, as in this case, on 

terminal (T) or frozen (F) nodes. These nodes are frozen because they are the output nodes of the transitions 

that represent the co-occurrence relationship at which the hierarchical structure ends. 

 

 

Figure 9. Inheritance tree for the class “shuttle”  (Fig.8)  

The obtained inheritance tree for the concept shuttle  gives the conclusion that the class shuttle does not 

co-occur with the classes tree, sand, water and rock, so it can be concluded that the concept shuttle  most 

likely does not match the context of the image depicted in Fig. 6 and should be discarded. Furthermore, the 
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concept, which is detected as an intruder because it does not belong to the context could be replaced with a 

concept that has similar properties but this opportunity is not used in this system. 

After checking for the inconsistency, the refined image annotation at the object level is       

{                   }. 

The inheritance trees for the obtained object classes sky, rock, sand and water show that they can appear 

together in the image, so it can be concluded that they match the likely context. 

6. SCENE CLASSIFICATION USING THE FUZZY-RECOGNITION 

ALGORITHM 

For the task of scene calssification for a new, unknown image, the fuzzy-recognition algorithm based on the 

inverse KRFPN scheme (–KRFPN) is used [Ribarić and Pavešić, 2009]. The –KRFPN scheme is obtained by 

interchanging the position of the input I and the output O functions for the transition T  in the 13-tuple. 

Additionally, by changing the position of the input and output functions, the relation mapped to the transition 

is transformed into its corresponding inverse relation. For example, for the relation consist_of  in the KRFPN 

scheme its inverse relation is_part_of  is used in the –KRFPN scheme, i.e., –(consist_of)=is_part_of. Also, 

the co-domain of the associated function           that assigns values to the tokens is expanded by 

            so that in the case of an exception, a token may be associated with a negative value. 

The procedure for the scene recognition is as follows. The results of the image annotation obtained at the 

first tier after inconsistency checking, are the input to the scheme used for further image annotation at the 

second tier. For the inference of unknown scene classes, it is assumed that a scene class is an aggregation of 

characteristic object classes.  

The object classes    are mapped to the places {          } using the function          . If defined, 

the confidence based on a posterior probability of each object class    can be used as the token value        in 

the place   , e.g. if Naïve Bayes classifier is used. Otherwise, if confidence value for the classification result is 

unknown, the token value is set to 1.  

For instance, let us take an image   depicted in Fig. 6. If the results of the image annotation at the first 

tier are object classes that exist in the knowledge base with the corresponding degrees of truth: (sky {0.5}, 

sand ({0.7}), rock ({0.4}), water ({0.6}), then by using the function     the initially marked places are 

determined (   (sky) = p20,    (sand) = p18,    (rock) = p17,    (water) = p26). A small part of a –KRFPN 

scheme with initially marked places and the corresponding token value is given in Fig. 9.   
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Figure 10. A small part of the inverse –KRFPN scheme for the scene recognition of the image depicted in Fig. 6.  

According to the initially marked places and the corresponding degrees of truth, four root nodes   
    

        of the recognition trees will be formed:    
      {   }    

      {   }    
      {   }    

      {   }   

Figure 10 shows the corresponding recognition trees in the -KRFPN scheme with enabled transitions, 

starting from the root nodes. By firing the enabled transitions of the -KRFPN scheme, new nodes at the next  

higher level of the recognition tree are created and appropriate values                      of the tokens 

are obtained, where    is the transition between concepts    and    ,              if the reliability       of 

the object class    is defined, or          otherwise,       is defined as (3).  

Note that only the recognition tree with the root node   
  directly corresponds to the small part of –KRFPN 

depicted in Fig. 9. The leaf nodes of all the other trees are obtained based on the whole –KRFPN, which 

contains all the places that correspond to the scene classes. 

   

 

Figure 11. Recognition trees with enabled transitions for each root node (Fig. 9) 
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 The procedure of scene recognition using the fuzzy-recognition algorithm that corresponds to the 

recognition trees in Fig. 10 is described below. Due to the simplicity of the example, only one level of the 

recognition tree is generated. 

Each leaf node    
  in the recognition tree   is represented by a vector of dimension | |, where P is the set 

of places, so that the index of a node in the recognition tree corresponds to the index of the vector component 

and the value of a node is assigned to a value of the vector component. For example, a node    
  

  
  
        is represented by the vector    

                       so that all the vector components are 

assigned a value 0, except the 45
th
 vector component, to which a node value of 0.595 is assigned. Accordingly, 

the total sum   of all the nodes represented by the distribution vectors   
             is computed:  

   ∑ ∑   
 

  

   

 

   

  (5) 

where   is the index of the leaf nodes in the recognition tree  ,    | | is the total number of leaves in the 

recognition tree  , and   is the index of the recognition tree,           | |. The obtained vector   

represents the ranking of scene classes according to confidence values obtained by the fuzzy recognition 

algorithm. 

In this example                           and the total sum is: 

   ∑ ∑   
   

   
 
    ∑   

   
    ∑   

  
    ∑   

  
    ∑   

   
    = (0…0, 0.36, 0.44, 0.09, 0.05, 0, 0.03, 0, 0.04, 

0, 0, 0.05, 0.03, 0.03, 0.04, 0, 0.16, 1.80, 0.05, 0.05, 1.11, 0, ...0).  

For example, the 30
th
 component of the vector Z with the value 0.44 is obtained by summing all the values 

of the nodes in all the recognition trees that correspond to the place p30 (i.e.   
    

    
    

 ):  0.115 + 0.175 + 

0.052 + 0.102 = 0.44 

Then, a set of indices of elements with the highest sum             | |  among all of the nodes in all 

the recognition trees is selected as:  

           
         | |

{  }  (6) 

In the case that there are several   for which the same maximum value of {  } is obtained, the set     is created: 

   {  
    

   }  (7) 

A scene class assigned to a place with the max argument         is chosen as the best match for a given 

set of object classes obtained during image annotation the first tier. In this example, the 45
th
 component of the 

vector Z has the maximum value 1.80. Therefore, a set of max arguments consists of only one element   
    , 

so only one scene class is chosen as the best match, i.e., the one that is assigned to a place with that max 

argument,  (p45) = Seaside. The next scene candidate is “Inland” with a value of 1.11. 

By merging the labels that are so far associated with the image, the two-tiered annotation of the image is 

formed. For example image   in the Figure 6 above, the annotation is         {                   }  

{       }. 
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7. EVALUATION OF THE PROPOSED TWO-TIER MODEL 

We have compared the results of automatic image annotation using different subsets of features at the first 

tier of our system with previously published results and with the results of the second tier. The obtained labels 

on object level are refined using inconsistency checking, and the impact of that process is analysed on the 

scene level. The achieved results are averaged over 3 runs, since 3-fold cross validation was used. The 

classification performance on the object level was measured in terms instance-based and label-based accuracy, 

precision, recall and F1 score [Tsoumakas and Katakis, 2007].  

 

7.1 Evaluation measures 

The instance-based evaluation measures are based on the average differences of the actual and the 

predicted sets of labels over all examples in the test dataset. The label-based evaluation measures assess the 

predictive performance for each label separately and then average the performance over all labels [Tsoumakas 

and Katakis, 2007]. These measures are used due to the fact that an instance may not only be correctly or 

incorrectly annotated, but also partially correctly in case of multi-label classification. For example, if an image 

should be annotated with grass, sky, wolf, and is automatically annotated with tree, sky, dog, cloud, then the 

evaluation measure should reflect the insertion of wrong labels (tree, dog, cloud), missing labels (wolf, grass) 

and correct labels (sky).  

To define the evaluation measures, we assume that an instance             should be classified into 

the set of true object labels    {          },       where   is a set of images,   is a set of all class labels 

and   | | corresponds to the number of images in the set  .  For an example   , the set of labels that are 

predicted by a classifier is denoted as   .  

Instance based accuracy is defined as the average ratio of correctly assigned and all labels assigned to each 

example by the classifier and the true labels: 

            
 

 
∑

|     |

|     |

 

   

 

Instance based precision is defined as the average ratio of correctly assigned and all labels assigned to each 

example by the classifier: 

             
 

 
∑

|     |

|  |

 

   

 

Instance based recall is defined as the average ratio of labels correctly assigned by the classifier and all 

labels in the ground truth for each example: 

          
 

 
∑

|     |

|  |

 

   

 

Instance based F-Measure is the harmonic mean of precision and recall: 

      
 

 
∑

 |     |

|  |  |  |

 

   

 

These measures reach their best value at 1 and the worst at 0. 
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Label based measures are computed firstly by computing the instance-based measure and then averaging 

over all labels. In the case of scene classification, which is treated as single-label classification, |  |  |  |    

and label-based measures are used. 

 

7.2 Data 

To evaluate the proposed two-tier model for image annotation a part of the Corel image dataset related to 

outdoor scenes [Barnard et al. 2003] was used. 

The features were extracted from images that were sized 128 x 192 pixels or 192 x 128 pixels. We have 

used images labelled with one or more labels from the set   of 54 object classes related to natural and artificial 

objects such as Airplane, Bird, Lion, Train etc. and background objects like Ground, Sky, Water etc,  provided 

by [Duygulu et al. 2002].  Additionally, we have labelled the images with one of the 20 elements form the set 

   related to outdoor scenes such as SceneTrain, SceneLion, Inland, etc.   

Some labels were too rare to effectively train the classifier and images that correspond to those labels were 

excluded from data. The resulting data were more suitable for learning of classification models. The details of 

the data set before and after simplification are presented in Table 1.  

Table 1. Statistic of original and simplified data sets   

1.1 Statistic 
Original data Simplified data 

1.2 Objects Scenes 1.3 Objects Scenes 

No. of labels 54 20 22 12 

Max images per label 248 81 220 77 

Min images per label 1 1 9 15 

Mean images per label 26 25.2 50 32 

Median images per label 7.5 19 28 25.5 

Std. dev. per label 50 22 56 21 

 

7.3 Annotation results 

The label and instance based evaluation results for annotation on object level are presented in Table 2 

considering different feature subsets and classifiers (RAKEL, ML-kNN and NB along with the data 

transformation). Overall the best results considering the label-based F1 score are obtained using the NB 

classifier independently of the used feature subset, due to significantly better achieved recall than with other 

methods. However, on instance-based measures NB obtained the worst results with both precision and recall. 

The RAKEL-C4.5 performed best on instance-level but performed worse than NB on label-based measures.  

For both instance-based and label-based measures, the RAKEL-kNN achieved slightly lower results than the 

best classifier. The RAKEL-C4.5 also performed well with all subsets of features, although their dimensions 

varied between 48 in case of dominant colours and 740 when all features are used.  The achieved results are 

better than published results for 28 object classes, on the same data set [Carbonetto et al. 2004, Ivašić-Kos et 

al. 2010]. In [Carbonetto et al. 2004] the authors have reported average precision for the task of automatic 

image annotation  on object level achieved with the dMRF model based on Markov random fields defined in 

[Carbonetto et al. 2004] and the dInd translation model from [Duygulu et al. 2002]. The dMRF model achieves 
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a label-based precision of 21%, while the dInd model achieves the label-based precision of 20%. With that 

feature set and the Naïve Bayes classifier using image segments, label-based precision of 32.6% and  recall of 

27.5% was achieved[Ivašić-Kos et al. 2010]. 

Table 2. Evaluation results for object annotation level. 

Feature 

subset 

Classification 

method 

Label-based results for object 

level annotation  

Instance-based results for object 

level annotation 

Precision Recall F1 score Precision Recall F1 score 

All 

RAKEL-C4.5 0.39 0.28 0.30 0.61 0.54 0.54 

RAKEL-kNN 0.49 0.41 0.40 0.57 0.53 0.53 

ML-kNN 0.32 0.2 0.23 0.66 0.42 0.48 

NB 0.38 0.64 0.46 0.22 0.34 0.25 

GIST 

RAKEL-C4.5 0.35 0.26 0.27 0.58 0.50 0.50 

RAKEL-kNN 0.48 0.45 0.43 0.57 0.55 0.54 

ML-kNN 0.26 0.17 0.19 0.60 0.38 0.44 

NB 0.31 0.65 0.40 0.21 0.38 0.26 

DC+CM 

RAKEL-C4.5 0.40 0.27 0.29 0.60 0.50 0.52 

RAKEL-kNN 0.31 0.32 0.29 0.50 0.48 0.47 

ML-kNN 0.16 0.10 0.11 0.63 0.34 0.41 

NB 0.28 0.65 0.36 0.22 0.44 0.27 

DC1..DC

5 + CM 

RAKEL-C4.5 0.37 0.27 0.29 0.61 0.53 0.54 

RAKEL-kNN 0.37 0.31 0.30 0.51 0.46 0.47 

ML-kNN 0.19 0.11 0.12 0.63 0.33 0.41 

NB 0.32 0.67 0.41 0.22 0.39 0.26 

DC+ 

DC1..DC

5 + CM 

RAKEL-C4.5 0.39 0.27 0.30 0.59 0.52 0.52 

RAKEL-kNN 0.39 0.33 0.31 0.51 0.46 0.47 

ML-kNN 0.20 0.11 0.12 0.64 0.34 0.41 

NB 0.31 0.66 0.41 0.22 0.4 0.26 

 

 

Often, the results of automatic annotation can include labels that do not correspond to the context of an 

image. By using the facts from the knowledge base and the co-occurrence relationships between object classes, 

the obtained results of the image annotation at the first tier can be refined using fuzzy inheritance algorithms 

for inconsistency checking. In our model those object classes that are obtained as a result of the image 

annotation in the first tier and did not fit the likely context are discarded. As a consequence, the average 

precision of the image annotation can be increased if there is only one intruder class among the object level 

annotation, Fig. 12(a). If the majority of labels for an instance are wrong, the inconsistency checking can 

discard the true labels and the precision falls, Fig. 12(b).  
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Image example: 

 
(a) 

 
(b) 

Object labels before 

inconsistency checking 
coral, sky, wolf, trees, grass shuttle, train, building 

Object labels after 

inconsistency checking 
sky, wolf, trees, grass train, building 

Figure 12. A positive (a) and negative (b) example of inconsistency checking of object labels. 

 

Automatic image annotation at the second tier of the proposed model is performed by the fuzzy-recognition 

algorithm of the KRFPN scheme, and the object classes from the annotation of the first tier obtained using 

RAKEL-kNN and all features. The obtained label-based precision is 61% and the recall is 55%. The results of 

the second tier are dependent on the results of the first tier that are used as input. For those scenes for which 

there is one main object class which is highly discriminant for that scene (e.g train for SceneTrain), it is 

crucial to detect that object at the first tier. In this kind of scenes background objects that are common to most 

scenes do not play an important role, but in scenes without one prominent object (e.g. Sea, Inland) they are 

important. For example, in case of object-level annotation, the best F1 score is obtained for train (0.8), tracks 

(0.77) and polarbear (0.68), and the worst for wolf (0.07) classes. This is reflected on the scene level 

classification, where SceneTrain has the best precision (0.86) and SceneWolf among the worst (0.30). For 

background objects, the best F1 scores are for sky (0.65) and grass (0.66) and the worst F1 for mountain (0.11) 

and clouds (0.13). Differences in results on object level may be due to imbalanced number of examples per 

class and the fact that in case of multi-label classification, partially correct annotation is possible. In case of 

similar classes, e.g. lion and tiger, cloud and sky in multi-label classification, both labels can be assigned.  

In Table 3, some examples of image annotation obtained by the proposed model are shown. 

Table 3. Examples of two-tier image annotation. 

Image example: 

    

First tier shuttle train, tracks, sky grass, tiger water, sand, sky, road 

Second tier SceneShuttle  SceneTrain SceneTiger Seaside 

8. CONCLUSION 

The aim of this paper is to present a two-tier annotation model where the first tier corresponds to object 

level and the second tier to scene level annotation. In the first tier, images are annotated with labels of objects 

present in them, using multi-label classification methods on low level features extracted from images. In the 

second tier the fuzzy knowledge-representation scheme based on the Fuzzy Petri Net (KRFPN) is 

incorporated. The places of the KRFPN are used to represent the concepts related to scene and object classes. 

The transitions of the KRFPN are used to represent the relationships between concepts. The KRFPN scheme is 
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compatible with various classification methods, and different types of classification methods were tested for 

image classification in the first tier. The inference engine of the KRFPN scheme is used for image annotation 

on the scene level as well as for inconsistency checking of object labels obtained at the first tier. To be more 

specific, the fuzzy-recognition algorithm provides inference about relationships between scene classes and 

their components (object classes) for scene classification, and the fuzzy-inheritance algorithm provides 

reasoning about co-occurrence relations between object classes for inconsistency checking. The algorithms of 

the inference engine of the KRFPN scheme are presented with finite-inference trees. Their complexity is 

O(nm), where n is the number of places (concepts) and m is the number of transitions (relations). In practise 

usually the whole net is not used for inference, but only parts that can be reached from the initially marked 

places. If the token values represent the reliability of concepts, they decay quickly after passing through few 

levels of the tree.  

The proposed model was experimentally tested for annotation of a dataset of outdoor images. Different 

subsets of features composed of dominant colours, image moments, and GIST descriptors as well as different 

classification methods (RAKEL, ML-kNN and Naïve Bayes) were tested in the first tier. Obtained results at 

the first tier are better than already published on the same set of images and so are more useful as inputs to the 

KRFPN scheme.  

This research was focused on the domain of outdoor images for which the KRFPN scheme and inference 

engine provide knowledge for image annotation, but it can be further expanded with knowledge from different 

domains. Furthermore, the proposed two-tier annotation model is adaptive and each tier can be independently 

used and improved. 
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