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Abstract: In this paper we propose a multi-layered image-annotation system. The first layer of the image 

interpretation corresponds to image annotation based on the classification of image segments. The outputs 

of the first layer are elementary classes that correspond to objects of outdoor scenes. For higher layers of 

the image interpretation, in order to minimize the semantic gap, a combination of elementary classes and a 

knowledge-representation scheme based on the Fuzzy Petri Net (KRFPN) is used. The inference engine of 

the KRFPN supports the efficient inconsistency checking of the classified segments, scene recognition, as 

well as the inference of generalized and derived classes. The results of the image interpretation obtained for 

the outdoor domain (a subset of a Corel image base) were compared to the published results obtained on the 

same image base. Owing to the fuzzy-knowledge representation scheme, the obtained image interpretation 

is enriched with new, more general and abstract concepts that are close to the concepts people use to 

interpret these images. 

 

1 INTRODUCTION 

Digital images have become unavoidable in the professional and private lives of modern people. In recent 

years, the frequent use of digital images has become necessary in different fields like medicine, insurance and 

security systems, geo-informatics, advertising, commerce, as well as in other business areas. On the other 

hand, in private life, digital images are used for documenting people close to us, pets, sights and events such as 

birthdays, parties, trips, excursions and sporting activities. This widespread use has caused a rapid increase in 

the number of digital images that, today, on specialized websites, can be counted in the millions. However, a 

large number of images leads to problems with searching and retrieval, as well as with organizing and storing. 

As the majority of images are barely documented, it is believed that we could retrieve and arrange images 

simply if they were automatically annotated and described with words that are used in an intuitive image 

search. However, the task of mapping image features that can be extracted from raw image data to words that 

users normally use for articulating their requirements is not a trivial one. For example, it seems natural to use a 

destination name when retrieving holiday images or some terms that describe a scene, such as the coast, 

mountains or activities like diving, skiing, etc. A major research challenge is bridging the semantic gap 

between the low-level image features available to a computer and the interpretation of the images in the way 

that humans do [Smeulders et al. 2000]. In addition, one should take into account that image interpretation 
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inherent to humans includes concepts associated with the content of the image on different levels of 

abstraction. This is referred to as the multi-layered interpretation of image content. 

In this paper a system for multi-layered image annotation is proposed. The first layer of the image 

interpretation contains concepts obtained by the classification of image segments. For higher layers a 

knowledge-representation scheme based on a Fuzzy Petri Net is proposed. The main contributions of our 

approach are associated with the use of a fuzzy knowledge-representation scheme with an integrated inference 

engine defined for inconsistency checking of classification results of image segments, automatic scene 

recognition and for deriving of classes that are more abstract. The fuzzy Petri nets are used as a graph-based 

image representation model. A statistical approach is used to define the facts and their truth-values in the 

knowledge base. The architecture of the system is general and can be adapted for new domains by acquiring 

new facts and adding them to the knowledge base. 

The paper is organized as follows: First, in Section 2, different approaches to image-content interpretation 

are explained and a detailed overview of related work is given. The layers of the multi-layered image 

representation with respect to the amount of knowledge needed for the image interpretation are given in 

Section 3. A system for the multi-layered image annotation is proposed in Section 4. An example of a fuzzy-

knowledge representation scheme related to the outdoor image domain is presented in Section 5. Inputs to the 

scheme are concepts obtained as the results of an image-segments classification using a Bayesian classifier. 

The application of the fuzzy inference engine for checking the consistency of the obtained results of the image 

segment classification and the recognition of scene context is given in Sections 6 and 7, respectively. The 

fuzzy inference algorithm used to derive more abstract concepts associated with the image is described in 

Section 8. The experimental results of the image interpretation at the layer that corresponds to automatic image 

annotation are given and compared to previously reported methods [Duygulu et al. 2002, Carbonetto et al. 

2004] in Section 9. Additionally, in Section 9, an improvement to the results of the automatic image 

annotation after checking the inconsistency of the concepts obtained during the image-segments classification 

is presented. 

 

2 RELATED WORK 

Descriptions of various models of multi-layered image annotation are given in the literature [Shatford 

1986, Eakins and Graham 2000, Hare et al. 2006]. Among the oldest is Shatford’s image-content classification 

of general-purpose images that classifies image content as general, specific and abstract [Shatford 1986]. 

Additionally, the contents of an image are associated with aspects of objects, with spatial and temporal aspects 

and aspects of activities or events. In [Eakins and Graham 2000], a multilayer interpretation of the image 

content is considered in the context of image search. The authors defined three semantic layers of image 

interpretation. At the first level, image interpretation is based on the presence of certain combinations of 

features, such as color, texture or shape, while at the second level, image interpretation deals with the presence 

and distribution of certain types of objects. At the third level, image interpretation includes a description of 

specific types of events or activities, locations and emotions that one can associate with the image. The authors 

[Harre et al. 2006] provide a simplified hierarchical view between the two extremes, the image itself and its 

full semantic interpretation. At the lowest level are the image and its "raw" data. The second level consists of 
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low-level features related to a part of an image or to the whole image. A combination of prototype feature 

vectors is part of the third level. If these image parts can be associated with the corresponding objects, then 

this would make the fourth level. The top level of image interpretation, referred to as full semantics, includes 

concepts that describe the events, actions, emotions and a broader context of the image.  

There are two major approaches widely used for image annotation, one using statistical methods and the 

other mostly using knowledge-based methods belonging to the field of artificial intelligence. In the statistical 

approach, most methods can be grouped as translation or classification models. In the translation model of 

[Duygulu et al, 2002] the co-occurrence of image regions and annotation words are used to model the 

relationship between annotation words and images or image regions. In classification methods, such as 

[Barnard et al, 2003, Li and Wang, 2003, Hu and Lam, 2013], words used for image annotation correspond to 

class labels for which classifiers are trained. Some methods use multi-label learning for solving the problem of 

annotating images with more than one word [Feng and Xu, 2010].  

Such statistical methods commonly use quite simple vocabularies that can be large but are generally not 

structured because no relations are defined between the concepts in the vocabulary. On the other hand, 

methods that rely on knowledge bases used sophisticated, structured vocabularies in which geometrical, 

hierarchical or other relations between concepts are established [Tousch et al, 2012]. This kind of vocabulary 

supports the multi-layered image annotation that is suitable for image retrieval. 

A few approaches have explored the dependence of words on image regions [Blei and Jordan, 2003] or 

exploit the ontological relationships between annotation words, demonstrating their effect on automatic image 

annotation and retrieval [Maillot, 2005].  

A comprehensive survey of research made in the field of statistical automatic image annotation methods 

can be found in [Liu et al, 2007, Datta et al, 2008; Zhang et al, 2012].  

For a multi-layered image annotation, several approaches that use models for knowledge representation and 

reasoning were proposed. The authors [Benitez et al. 2000] described a semantic network to represent the 

semantics of multimedia content (images, video, audio, graphics and text). The basic components of the 

semantic network are concepts that correspond to real-world objects and the relations among them, such as 

generalization, aggregation and perceptual relationships based on the similarities of their low-level features. 

The authors [Marques and Barman 2003] propose the model with three levels. The lowest level contains 

vectors of low-level features extracted from images. The feature vectors are classified into the concepts from 

flat vocabulary using Bayesian networks. On the highest level is the RDF ontology that contains knowledge 

about the keywords and information about the relations between different concepts. 

The authors [Srikanth et al, 2005] proposed using a hierarchical dependency between annotation words to 

improve translation-based automatic image annotation and retrieval. The hierarchy is derived from the text 

ontology WordNet and represents the various levels of generality of the concepts expressed in image regions 

and words. To predict the likelihood probability of assigning a class label given an image, statistical language 

models defined on a visual vocabulary of blobs, represented by region feature vectors, are used. 

In [Ivasic-Kos et al. 2010] a semantic image content analysis framework based on Fuzzy Petri Net is 

proposed for classification of image segments into objects. Also, a formal description of hierarchical and 

spatial relationships among concepts from the outdoor image domain is described.  
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In [Simou et al. 2008, Athanasiadis et al. 2009] an ontology and the inference engine FIRE (Fuzzy 

Inference Reasoning Engine) [Stoilos et al. 2005] were used for analyzing the image content belonging to the 

beach domain. Later, the same group of authors [Papadopoulos et al. 2011] compared different approaches 

attempting to use spatial information for semantic image analysis.  

3 MULTI-LAYERED IMAGE REPRESENTATION 

An image representation includes the visual content and the annotation of an image. The visual content of 

an image refers to the information that may be collected by analyzing low-level image features while the 

image annotation includes concepts that may describe both the content and the context of an image. The task 

of automatic image annotation is challenging because the number of possible concepts that one can use to 

describe most images is large, highly dependent on application, user's knowledge, needs, cultural background, 

etc. and it is hard to choose the right type of concepts that would be universally appropriate. For instance, to 

annotate the images in the Fig. 1, one can use concepts that are related to the objects that appear in the image 

(sand, sea, sky, snow), concepts that represent the scene (beach, coast, coastline, shore, seashore), more 

general scene concepts (wildlife, outdoor, natural scene) or activities (walking, get wet feet). If the user is 

familiar with the context of an image, its description will be more subjective and will probably include the 

name of a place (e.g. Tallinn, Estonia for Fig. 1a), names of the people appearing in it, description of the 

relevant event (e.g. Meeting for Fig. 1a) or evoked emotions, etc.  

 

 

   
Objects sand, sea, sky plane, sky, trees, building snow, polar bear 

Scenes Coast Scene Plane Scene Polar bear  

More general 

(abstract) 

concepts 

Natural scene, 
Outdoor 

 

Vehicle 
Man-made object, 

Outdoor 
 

Wildlife,  
Mammal,  
Outdoor,  

Natural scene 

Derived 

concepts 

Beach, SeaShore, 
Tallinn, Estonia 

Meeting 

Transportation Arctic 

 

Figure 1. Examples of images and their annotation at different levels of abstraction. 

 

Although different people will most likely use different concepts to annotate the same image, used 

concepts can be organized according to the amount of knowledge needed to reach each abstraction level of 

image interpretation [Ivasic-Kos et al, 2009]. Therefore, we propose a multi-layered image representation 

model in which layers correspond to concepts at different levels of abstraction. The layers reflect the increase 

of amount of knowledge included in the interpretation (Fig. 2) from the lower to higher layers, where the 

lower layers (𝑉1 - 𝑉2) represent the visual content, and the layers  𝑀𝐼1 −   𝑀𝐼4 represent the image semantics. 



5 
 

The initial layer of an image representation is the layer 𝑉0, and it represents the raw image. The image is 

usually segmented (layer 𝑉1) for analysis, and the low-level features are extracted from the image segments 

(layer 𝑉2). The amount of knowledge required for segmentation (layer 𝑉1) and feature extraction (layer 𝑉2) is 

low. It is assumed that a multi-layered image annotation includes concepts ranging from elementary classes 

EC (layer 𝑀𝐼1) in which image segments are classified, scene classes SC (layer 𝑀𝐼2) that describe the scene, 

ending with generalized classes GC (layer 𝑀𝐼3) and derived classes DC (layer 𝑀𝐼4). For instance, the 

proposed multi-layered image annotation related to Fig. 1.c) is EC ={snow, polar bear}; SC ={Scene-Polarbear}; 

GC = {Wildlife, Mammal, Outdoor, Natural scene}; DC ={Arctic}. 

 

 

Figure 2. Layers of image representation in relation to the knowledge level 

Elementary classes are obtained as the results of image-segments classification and are used as flat 

vocabulary for automatic image annotation. It is assumed that instances of elementary classes correspond to 

objects in the real world. Spatial relations, spatial locations and co-occurrence relations can be defined for 

elementary classes, like EC1 is-above EC2, or EC1 is-on-top, EC1 occurs-with EC3. Scene classes are used to 

represent the context or semantics of the whole image, according to common sense and expert knowledge. A 

part-of relation or, its inverse, relation consists-of, can be defined between an elementary class and a scene 

class, e.g. EC1 is-part-of SC2 or SC2 consists-of EC1. Generalized classes are defined as a generalization of 

scene classes. The is-a relation can be defined between a scene class and a generalized class, e.g. SC2 is-a GC1. 

There can be multiple levels of generalization so the relation is-a can be defined between generalized classes 

too, e.g. GC1 is-a GC3 is-a GC5. Derived classes include abstract concepts, activities, events or emotions that 

can be associated with an image. Different types of relations, such as associate-to or is-synonym-of relation 

can be defined between derived classes and generalized or scene classes.  
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4 A MULTI-LAYERED IMAGE ANNOTATON SYSTEM 

The architecture of our multi-layered image annotation system (MIAS) is depicted in Fig. 3. The system 

deals with all the layers of image representation given in Fig. 2, ranging from the segmented image at layer 𝑉1 

to the multilayer image interpretation at layer 𝑀𝐼4. The input to the system is an image belonging to the 𝑉0 

layer of the image representation and the system output is a multi-layered interpretation of the image that 

consists of concepts obtained from four layers of image interpretation, i.e., layers 𝑀𝐼1, 𝑀𝐼2, 𝑀𝐼3 and 𝑀𝐼4. 

 

Figure 3. Architecture of a multi-layered image-interpretation system (MIAS) 

A raw image 𝐼 at layer 𝑉0 is first segmented with a normalized-cuts algorithm [Shi and Malik, 2000]. The 

segmented image corresponds to the 𝑉1 layer of the image representation. Formally, the relationship between 

the raw image 𝐼 and the image segments 𝑠𝑖, 𝑖 = 1, . . , 𝑚 may be written as 𝑉1(𝐼) = {s1, s2, … , sm}. From each 

image segment, low-level features are extracted (such as size, position, height, width, colour, shape, etc.) 

which should represent the geometric and photometric properties of a segment. Each image segment is then 

represented by the k-component feature vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑘)𝑇. Accordingly, an image at the 𝑉2 layer of 

the image representation is described with as many feature vectors as there are image segments. Thus, the 

relationship between the raw image 𝐼 and the feature vectors 𝒙𝑖, 𝑖 = 1, . . , 𝑚 obtained from the image segment 

𝑠𝑖 , 𝑖 = 1, . . , 𝑚 is given as 𝑉2(𝐼) = {𝒙1, 𝒙2, … , 𝒙𝑚}. 

Each image segment is then classified using the Bayes classifier into one of the elementary classes 𝐸𝐶𝑖 ∈

𝐸𝐶 according to the maximum posterior probability (cMAP). The Bayes classifier was trained on a training set 

of image segments annotated with labels corresponding to natural and artificial objects. For each occurrence of 

the feature vector 𝒙, a classification is based on the Bayes theorem:  
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𝑐𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝐸𝐶𝑖 ∈𝐸𝐶

𝑃(𝒙|𝐸𝐶𝑖) 𝑃(𝐸𝐶𝑖)

𝑃(𝒙)
. (1) 

 

The conditional probability 𝑃(𝒙|𝐸𝐶𝑖) of a feature vector 𝒙 for the given elementary classes  𝐸𝐶𝑖 ∈ 𝐸𝐶 and 

the prior probability 𝑃(𝐸𝐶𝑖),  ∀𝐸𝐶𝑖 ∈ 𝐸𝐶 are estimated according to data in a training set. It is taken into 

account that the evidence factor 𝑃(𝒙) is a scale factor that does not influence the classification results. 

The result of the image-segments classification is m annotated segments of the image 𝐼 in such a manner 

that each one is annotated with one of the elementary classes. The union of elementary classes, obtained by the 

classification of the image segments, forms an automatic image interpretation at layer 𝑀𝐼1, often referred to as 

automatic image annotation. The classes or elements of the interpretation set 𝑀𝐼1(𝐼) ⊆ 𝐸𝐶 are also called 

labels, annotation words, or keywords. 

A knowledge-representation scheme based on the Fuzzy Petri Net [Ribarić and Pavešić, 2009] is used to 

represent the image domain knowledge. The proposed knowledge-representation scheme has the ability to 

cope with uncertain, imprecise, fuzzy knowledge about concepts and relations among them.  

The fuzzy knowledge base contains the following main components: fuzzy relationships between 

elementary classes, between elementary classes and scene classes and fuzzy relationships between scene 

classes and generalized or derived classes. The fuzzy relationships are defined using the training set and expert 

knowledge. One of the components of the system MIAS is an inference engine (IE) used for image 

interpretation on the layers  𝑀𝐼1 −  𝑀𝐼4. The inference engine supports the fuzzy inheritance and fuzzy 

recognition procedures. The fuzzy inheritance is used for inconsistency checking and for class generalization 

and the fuzzy recognition is applied for scene recognition. 

The facts in the fuzzy knowledge base, particularly those related to relationships among elementary classes, 

are used to check the consistency of the set 𝑀𝐼1(𝐼). An elementary class for which it is concluded that it does 

not belong to a likely context, obtained e.g. due to inaccurate segmentation, can be discarded or replaced with 

another elementary class that has similar properties and fits the context. 

The elementary classes of an image that have passed inconsistency checking are the inputs into the 𝑀𝐼2 

image-interpretation layer for scene recognition. Each scene in the knowledge base is defined based on a 

training set as an aggregation of typical elementary classes. Thus, it is possible to conclude which scene is the 

most likely one from the elementary classes from the set  𝑀𝐼1(𝐼). The recognised scene class makes the image 

interpretation at the layer 𝑀𝐼2, 𝑀𝐼2(𝐼) ⊆ 𝑆𝐶. 

Based on the scene class from the set 𝑀𝐼2(𝐼), more abstract generalized classes are inferred by the 

inference engine (see Section 5.1) using generalization relationships from the fuzzy knowledge base. Once 

determined, the generalized classes can be further generalized to a more abstract generalized class. Inferred 

generalized classes form image interpretation at the layer  𝑀𝐼3, so for a given image 𝐼, 𝑀𝐼3(𝐼) ⊆ 𝐺𝐶. The 

analogous inference procedure can be applied on generalized and scene classes to obtain derived classes 

related to a given image 𝐼, 𝑀𝐼4(𝐼) ⊆ 𝐷𝐶. 

The outputs from the proposed system are classes at different levels of abstraction that include elementary 

classes, scene classes and generalized classes as well as derived classes. 
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5 A KNOWLEDGE-REPRESENTATION FORMALISM 

To model objects and their relationships in an image, some knowledge-representation formalism has to be 

used and domain knowledge needs to be included. However, considering that image segmentation is often 

imprecise and subject to errors, and that knowledge about the concept is often incomplete, an ability to 

perform conclusions from imprecise, fuzzy knowledge is necessary. For this purpose, a knowledge-

representation scheme based on the Fuzzy Petri Net, named KRFPN, [Ribarić and Pavešić, 2009] is adopted.  

 

5.1 Definition of the knowledge-representation scheme adopted for the multi-layered image 

annotation  

The elements of the knowledge base used for a multi-layered annotation of images are presented using the 

KRFPN scheme [Ribarić and Pavešić, 2009]. 

The KRFPN scheme is defined as 13-tuple: 𝐾𝑅𝐹𝑃𝑁 = (𝑃, 𝑇, 𝐼, 𝑂, 𝑀, Ω, 𝜇, 𝑓, 𝑐, 𝛼, 𝛽, 𝜆, 𝐶𝑜𝑛),  (2) 

where the first ten components are of the marked Fuzzy Petri net (FPN) [Li and Lara-Rosano, 2000]: 

𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}, 𝑛 ∈ ℕ is a set of places; a function  𝛼: 𝑃 → 𝐷  maps a place from a set 𝑃 to a concept 

from a set 𝐷 used for multi-layered image annotation. It is set that 𝐷 = 𝐸𝐶 ∪  𝑆𝐶 ∪ GC ∪ DC where the subset 

𝐸𝐶 includes 28 elementary classes such as {Airplane, Train, Shuttle, Ground, Cloud, Sky, Coral, Dolphin, 

Bird, Lion, Mountain, etc.}, the subset 𝑆𝐶 includes 20 scene classes such as {Seaside, Inland, Sea, Space, 

Airplane Scene, Train Scene, Tigre Scene, Lion Scene, etc.}, the subset 𝐺𝐶 includes generalized classes such 

as {Outdoor Scenes, Natural Scenes, Man-made Objects, Landscape, Vehicles, Wildlife, etc.}, and subset 

𝐷𝐶 includes {Savannah, Africa, Safari, Vacation, etc.}.  

 

𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑚}, 𝑚 ∈ ℕ is a set of transitions; a function  𝛽: 𝑇 → Σ  maps a transition from a set 𝑇 to a 

relationship from a set Σ defined according to expert knowledge; a set Σ includes a relationship occurs_with 

between elementary classes that models the common occurrence of elementary classes in the image and its 

negation not_occurs_with, then the aggregation relationship consists_of defined between a scene class that has a 

role of aggregation and elementary classes that have the role of components of aggregation, then a 

generalization relationship is_a that is defined either between a scene class and generalized class or between 

generalized classes or derived classes and in addition a is_synonim_of relation defined between synonyms of 

concepts. For a relationship consists_of  an inverse relationship –(consists_of )=is_part_of is defined. 

 

𝐼: 𝑇 → 𝑃∞ is an input function, while 𝑂: 𝑇 → 𝑃∞ is an output function for a transition. In our scheme, the co-

domain of input and output functions is a set P instead of a bag 𝑃∞ as defined in [Peterson, 1981]. 

 

𝑀 = {𝑚1, 𝑚2, . . . , 𝑚𝑟}, 1 ≤ 𝑟 < ∞ is a set of tokens used by the inference engine. The inference procedure is 

based on the dynamic properties of the Petri Net, i.e. by firing of the transitions [Peterson, 1981]. The tokens’ 

distribution within places is given as Ω(p) ∈ 𝒫(𝑀), where 𝒫(𝑀) is a power set of 𝑀. The initial distribution 

of tokens defines the initial marking vector 𝛍0 = (μ1, μ2, … , μn) and μi = μ(pi) ∈ {0, 1}, i.e. in the initial 
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marking a place can have no or at most one token. In case of scene recognition, 𝛍0 corresponds to elementary 

classes obtained at the layer 𝑀𝐼1. 

 

𝑐: 𝑀 → [0, 1] is an association function that gives a token value that corresponds to the degree of truth of the 

concept mapped to a place marked with that token. The value of a token in an initial distribution can be set to 

the estimated posteriori probability of a concept that is associated with that marked place or set to 1. 

 

𝑓: 𝑇 → [0, 1] is an association function that gives a transition value that corresponds to the degree of truth of a 

relationship mapped to a transition. The measure of truthfulness of the relationship depends on the relationship 

kind and is computed using data in the training set in case of pseudo-spatial and spatial relationships based on 

co-occurrence of elementary classes in images. Also the function f can be defined by an expert in case of more 

abstract classes (SC, GC and DC).  

 

𝜆 ∈ [0, 1] is a threshold value related to transitions firing. If the threshold value λ is set, the truth value 

c(m1) of each token must exceed the value of  λ if the transition is to be enabled. 

 

𝐶𝑜𝑛 ⊆ (Σ × Σ) is in this scheme defined as a set of pairs of mutually contradictory relations. It is defined on a 

set of relations 𝑜𝑐𝑐𝑢𝑟𝑠_𝑤𝑖𝑡ℎ, 𝑛𝑜𝑡_𝑜𝑐𝑐𝑢𝑟𝑠_𝑤𝑖𝑡ℎ between elementary classes. It can be also defined between 

concepts if necessary. 

 

The KRFPN scheme can be represented by a directed graph containing two types of nodes: places and 

transitions. Graphically, the places 𝑝𝑖 ∈ 𝑃 are represented by circles and the transitions 𝑡𝑗 ∈ 𝑇 by bars. The 

directed arcs between the places and transitions, and the transitions and places represent the transition input 

𝐼(𝑡𝑗) ⊆ 𝑃 and output 𝑂(𝑡𝑗) ⊆ 𝑃 functions, respectively (Fig. 4). In a semantic sense, each place from the set 𝑃 

corresponds to a concept  𝑑𝑖 ∈ 𝐷 and any transition from set 𝑇 to a relation 𝑟𝑘 ∈ Σ. 

pi pktj

d1 d2r1

c(m1)>0  f(tj)>0

m1

 

Figure 4. A generic form of a chunk of knowledge in the Fuzzy Petri Net formalism  

A dot within a place represents a token  𝑚1 ∈ 𝑀. To a token at the input place 𝑝𝑖 ∈ 𝐼(𝑡𝑗) and the 

transition 𝑡𝑗 ∈ 𝑇, the values 𝑐(𝑚1) and 𝑓(𝑡𝑗) are assigned, respectively. The assigned values implement 

uncertainty and fuzziness in the scheme and can be expressed by truth scales, where 0 means “not true” and 1 

“always true”.  Semantically, a value 𝑐(𝑚1) expresses the degree of uncertainty of a concept  𝑑𝑖 ∈ 𝐷 mapped 
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to a particular place 𝑝𝑖 ∈ 𝑃, and the value 𝑓(𝑡𝑗) corresponds to the degree of uncertainty of a relationship 

 𝑟𝑖 ∈ Σ mapped to a transition 𝑡𝑗 ∈ 𝑇. 

A place that contains one or more tokens is called a marked place. The tokens give dynamic properties to 

the Petri Net and define its execution by firing an enabled transition. A transition is enabled when every input 

place of the transition is marked, i.e., if each of the input places of the transition has at least one token and if 

each token value exceeds the threshold value 𝜆.  

An enabled transition 𝑡𝑗 can be fired. By firing, a token moves from all its input places 𝑝𝑖 ∈ 𝐼(𝑡𝑗) to the 

corresponding output places 𝑝𝑘 ∈ 𝑂(𝑡𝑗). In Fig. 4, there is only one input place for the transition 𝑡𝑗, 𝐼(𝑡𝑗) = 𝑝𝑖 

and only one output place 𝑂(𝑡𝑗) = 𝑝𝑘. After the transition firing, a new token value 𝑐(𝑚2) at the output place 

is obtained as 𝑐(𝑚1)𝑓(𝑡𝑗) (Fig. 5).  

pi pktj

d1 d2r1

c(m2) = c(m1)* f(tj)>0 f(tj)>0

m2

 

Figure 5. A new token value is obtained in the output place after firing. 

The dynamic properties of the scheme are important for the inference-engine definition. The inference 

engine on the KRFPN scheme consists of three automated reasoning processes: fuzzy inheritance, fuzzy 

recognition and fuzzy intersection. All the steps of the inference algorithms are given in [Ribarić and Pavešić, 

2009], and below is a brief description of their application for inconsistency checking, scene recognition and 

for generalized and derived class inference. 

 

5.2 Modelling the truth value of relationships  

Given that the mapping between concepts and image features is often unreliable, and due to incomplete 

knowledge of the concepts, the uncertainty is implemented into the scheme by associating a value with a 

transition and with a token in a marked place. A transition value expresses the degree of truth or the reliability 

of the related relationship, while a token value corresponds to the truth value or the reliability of the concept. 

The degree of truth of the relationships depends on the type of the relationship and is set according to the 

expert knowledge or it is computed using data in the training set. For example, the degrees of truth of the 

relationships that model the generalization of classes are determined by the expert, while the truth value of the 

relationships 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑠_𝑜𝑓 and 𝑜𝑐𝑐𝑢𝑟𝑠_𝑤𝑖𝑡ℎ is computed using data in the training set, as explained below. 

5.2.1. Relationship consists_of 

To define the truth value of the aggregation relationships 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑠_𝑜𝑓 it is assumed that a scene may 

contain several characteristic elementary classes, so the relation among the scene and elementary classes is an 

aggregation relationship where the scene plays the role of the aggregation and the elementary classes have the 
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role of the components of the aggregation. Analyzing the data in the training set, a common occurrence of 

elementary classes in the scene class is determined. Instead of choosing an elementary class with a maximum 

posterior probability, the modified Bayes rule is used to form a set MS that corresponds to the specific scene 

class. A set 𝑀𝑆𝑆𝐶𝑖
 for a specific scene class 𝑆𝐶𝑖 ∀𝑖 is given by: 

𝑀𝑆𝑆𝐶𝑖
= {𝐸𝐶𝑘 ∶ 𝑎𝑟𝑔

𝑖
𝑃(𝑆𝐶𝑖|𝐸𝐶𝑘) ≈ 𝑎𝑟𝑔

𝑘

𝑃(𝐸𝐶𝑘|𝑆𝐶𝑖)

𝑃(𝐸𝐶𝑘)
≥  𝜀}. (3) 

 

The eq. (3) mirrors the idea of finding a most representative set of elementary classes for a given scene 

class. 𝑀𝑆𝑆𝐶𝑖
 is a set of all those elementary classes 𝐸𝐶𝑘 , 𝑘 = 1,2, … that participate in a scene class 𝑆𝐶𝑖 with the 

posterior probability 𝑃(𝑆𝐶𝑖|𝐸𝐶𝑘), ∀𝑘 𝐸𝐶𝑘  exceeding the marginal value ε ≥ 0.05. The marginal value is 

determined experimentally. The prior probability 𝑃(𝐸𝐶𝑘) for a given elementary class 𝐸𝐶𝑘 is obtained from 

the training set and it brings in the degree of discrimination of each elementary class for a given scene class.  

The truth value attached to the aggregation relationship 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑠_𝑜𝑓 between the elementary classes and 

the scene class was determined using the Bayes rule for the posterior probability 𝑃(𝑆𝐶𝑖|𝐸𝐶𝑘), ∀𝑘 𝐸𝐶𝑘 ∈ 𝑀𝑆𝑆𝐶𝑖
 

for the specific scene: 

𝑃(𝑆𝐶𝑖|𝐸𝐶𝑘) =
𝑃(𝐸𝐶𝑘|𝑆𝐶𝑖)𝑃(𝑆𝐶𝑖)

∑ 𝑃(𝐸𝐶𝑘|𝑆𝐶𝑗)𝑠
𝑗=1 𝑃(𝑆𝐶𝑗)

 ,  

 𝑠 = |𝑆𝐶| is a number of scene classes. 

(4) 

In Fig. 6, a part of a knowledge base is presented, showing the relationships among a particular scene class 

seaside and its components that correspond to elementary classes from the set 

𝑀𝑆𝑠𝑒𝑎𝑠𝑖𝑑𝑒 = {𝑠𝑘𝑦, 𝑐𝑙𝑜𝑢𝑑, 𝑤𝑎𝑡𝑒𝑟, 𝑔𝑟𝑎𝑠𝑠, 𝑡𝑟𝑒𝑒, 𝑟𝑜𝑐𝑘, 𝑠𝑎𝑛𝑑, 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔}  defined by the eq. (3). The degree of 

truth 𝑓(𝑡𝑗) of the transition 𝑡𝑗 that corresponds to the relation consists_of between a particular scene class 

“Seaside” and its components, is given by P(Seaside|𝐸𝐶𝑘), 𝐸𝐶𝑘 ∈ 𝑀𝑆𝑠𝑒𝑎𝑠𝑖𝑑𝑒 and is determined by eq. (4).  For 

instance, truth value of relation consists_of  mapped to transition t86 between a scene class “Seaside” of place 

p45 and elementary class “water” of place p26 is 𝑓(𝑡86) = 0.95.  
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Figure 6. Relations among the scene “Seaside” and its components 

5.2.2. Relationship occurs_with 

To define the truth value of the relationship 𝑜𝑐𝑐𝑢𝑟𝑠_𝑤𝑖𝑡ℎ, a mutual occurrence of classes 𝐸𝐶𝑗 and 𝐸𝐶𝑖 in 

the training set is analyzed. This can be formally defined as: 
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𝑃(𝐸𝐶𝑗|𝐸𝐶𝑖) =  
𝑃(𝐸𝐶𝑗 ∩ 𝐸𝐶𝑖)

𝑃(𝐸𝐶𝑖)
. (5) 

 

If the 𝑃(𝐸𝐶𝑗|𝐸𝐶𝑖) is less than the threshold value τ = 0.1 then the relationship not_occurs_with is defined 

between elementary classes 𝐸𝐶𝑗 and 𝐸𝐶𝑖, 𝑖 ≠ 𝑗 with the truth value of  0.9. Otherwise, the truth value of the 

not_occurs_with relationship is 1 − 𝑃(𝐸𝐶𝑗|𝐸𝐶𝑖). The 𝑜𝑐𝑐𝑢𝑟𝑠_𝑤𝑖𝑡ℎ relationship is used to validate the results 

of the image segment classification and to check whether the results obtained on all the image segments are 

consistent.  

5.2.2. Spatial relationships 

Spatial relationships like at the top, at the bottom, have not been used in this experiment since the 

relationships between the objects in the image differed from the natural relations. In images from the domain 

of natural scenes that we have used, the sky, trees, grass and water can appear both at the bottom and at the top 

of the image, so for example, water can appear above the grass and trees, as in Fig. 7 e). Ellipses in the Fig 7. 

a) - e) show the positions of the segments that are not in line with the common knowledge about spatial 

relationships of objects in nature. For example, the grass segment in Fig. 7 c) is above the tiger segment. 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

Figure 7. Position of objects sky, water, grass, trees and the spatial relations between the objects in the image 

 

If it turns out to be useful, spatial relationships, as well as fuzzy temporal relationships or new concepts can 

be added to the scheme. 

6 KOWLEDGE-BASED APPROACH TO INCONSISTENCY CHECKING 

It is to be expected that some of the elementary classes obtained using the Bayes classification rule (Eq. 4) 

do not fit the image context. To check for inconsistency of the obtained elementary classes, the facts included 

in the knowledge base related to the 𝑜𝑐𝑐𝑢𝑟𝑠_𝑤𝑖𝑡ℎ and 𝑛𝑜𝑡_𝑜𝑐𝑐𝑢𝑟𝑠_𝑤𝑖𝑡ℎ relations are used. The relations 

𝑜𝑐𝑐𝑢𝑟𝑠_𝑤𝑖𝑡ℎ and 𝑛𝑜𝑡_𝑜𝑐𝑐𝑢𝑟𝑠_𝑤𝑖𝑡ℎ for each obtained elementary class can be analyzed using the fuzzy-

inheritance algorithm, explained in detail in [Ribarić and Pavešić, 2009]. Based on the results of fuzzy 

inheritance, the classes which are elements of domain of relation not_occurs_with are eliminated from the set 

 𝑀𝐼1, the first semantic layer.  

In order to illustrate the fuzzy inheritance procedure, an example follows. Let the image 𝐼 in Fig. 8 be given 

for a multi-layered image annotation. After the segmentation, using a normalized-cuts algorithm, the image is 

segmented into 7 areas: 𝑉1(𝐼) = {s1, s2, … , s7}. For each image segment the low-level features are extracted 
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and a feature vector is formed, so the image is represented at level 𝑉2 by the set of feature vectors: 𝑉2(𝐼) =

{𝒙1, 𝒙2, … , 𝒙7}. Then, using the Bayes classification method, each feature vector is classified into one of the 

elementary classes 𝐸𝐶𝑖𝜖 E𝐶 according to the maximum posterior probability (cMAP, Eq. (1)). For image 𝐼 in 

Fig. 8, the obtained result, after the classification of all the image segments, 

is: "𝑠𝑘𝑦, 𝑤𝑎𝑡𝑒𝑟, 𝑤𝑎𝑡𝑒𝑟, 𝑠ℎ𝑢𝑡𝑡𝑙𝑒, 𝑟𝑜𝑐𝑘, 𝑤𝑎𝑡𝑒𝑟, 𝑠𝑎𝑛𝑑". Thus, the set of obtained elementary classes forms an 

automatic image interpretation at the layer 𝑀𝐼1 of the image  𝐼, 

as 𝑀𝐼1(𝐼) = {𝑠𝑘𝑦, 𝑤𝑎𝑡𝑒𝑟, 𝑠ℎ𝑢𝑡𝑡𝑙𝑒, 𝑟𝑜𝑐𝑘, 𝑠𝑎𝑛𝑑}. Note that the elementary class shuttle is a result of 

misclassification, because a shuttle is not present in the image.  

  

 

 

 

Figure 8. Example of image representations at layers 𝑉0, 𝑉1, 𝑀𝐼1  

 

Every obtained elementary class can be checked for inconsistency using the 𝑛𝑜𝑡_𝑜𝑐𝑐𝑢𝑟𝑠_𝑤𝑖𝑡ℎ 

relationships defined between elementary classes in 𝑀𝐼1(𝐼) and the fuzzy-inheritance algorithm. 

For instance, to check the inconsistency of the elementary class shuttle, the fuzzy-inheritance algorithm is 

used as follows. The appropriate place in the knowledge-representation scheme is determined by the 

function  𝛼−1(𝑠ℎ𝑢𝑡𝑡𝑙𝑒) = 𝑝19, 𝑠ℎ𝑢𝑡𝑡𝑙𝑒 ∈ 𝐸𝐶 (Fig. 9). On the Fig. 9, presented are those not_occurs_with 

relations for which shuttle is the input place. The initial token distribution is  𝛺0 = (∅, ∅, … . , {𝑝19, 1}, … , ∅), 

i.e. the initial token is placed only on the place 𝑝19. For inconsistency checking only relations with outputs 

from the set  𝑀𝐼1(𝐼) are useful and are shown in black. According to the original FPN algorithm all transitions 

related to these relations are enabled and can be fired because the number of tokens in the input place (shuttle) 

is equal to the number of input arcs of the transitions. The transition values are obtained from the training set 

using Eq. (5). After firing, the token is removed from the input place (shuttle) and new tokens are created and 

distributed to output places (sand, rock, water, …) as shown in Fig. 9b.  

rock 
sand 

sky 

water 

water

r shuttle 

water 
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a) b) 

Figure 9. A part of KRFPN scheme related to elementary class shuttle and the relationship not_occurs_with a) before firing and b) 

after firing the transitions.  

The inheritance tree is formed starting from the root node which is for this example  𝜋0(𝑝19, {1.0}). Firing 

of the transitions creates new frontier nodes of the inheritance tree that correspond to output places of 

transitions. This step is repeated until the condition for stopping of the algorithm is satisfied or the desired 

depth of the inheritance tree is reached. The frontier nodes are converted by the inheritance tree algorithm into 

the frozen node (marked F), k-terminal (marked k-T) or identical (marked I), or one of the types of nodes 

defined for the reachability tree (terminal, duplicate and interior). The inheritance tree of the KRFPN is similar 

to the concept of reachability tree of Petri Nets [Chen et al. 1990], except for the stopping conditions that are 

integrated in the KRFPN scheme (by the set Σ\{𝑖𝑠_𝑎}) or defined by the desired number of tree levels. Fig. 10 

shows a 1-level inheritance tree on the KRFPN scheme and the appropriate semantic interpretation of the 

inheritance paths for the elementary class shuttle. The nodes of the inheritance tree have the 

form (𝑝𝑗 , 𝑐(𝑚𝑙))  𝑗 = 1, 2, … , 𝑝, l= 1, 2, … , 𝑟, 0 ≤ 𝑟 ≤ |𝑀|, where 𝑐(𝑚𝑙) is the value of a token 𝑚𝑙 in 

place 𝑝𝑗, computed as the product of the token value at the input place and the corresponding value 𝑓(𝑡𝑗). The 

arcs of the inheritance tree are marked with a value 𝑓(𝑡𝑗) and the label of a transition 𝑡𝑗 ∈ 𝑇, where, for 

example, t396 = 0.8 means f(t396) = 0.8. For each of the inheritance paths the measure of truth is determined by 

the token value in a leaf node (the node in which the algorithm stops). 

 

Figure 10. Inheritance tree for the class “shuttle”  (Fig.9)  
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The obtained inheritance tree for the concept shuttle gives the conclusion that the class shuttle does not 

occur with the elementary classes from the set 𝑀𝐼1(𝐼), so it can be concluded that the class shuttle  most 

likely does not match the context of the image depicted in Fig. 8 and therefore can be discarded. 

Accordingly, after checking for the inconsistency, the refined image interpretation at the semantic layer 

𝑀𝐼1 is: 𝑀𝐼1(𝐼) = {𝑠𝑘𝑦, 𝑟𝑜𝑐𝑘, 𝑠𝑎𝑛𝑑, 𝑤𝑎𝑡𝑒𝑟}.  

7 SCENE RECOGNITION  

For the task of scene recognition for a new, unknown image, the fuzzy-recognition algorithm based on the 

inverse KRFPN scheme (marked as –KRFPN) is used [Ribarić and Pavešić, 2009]. The –KRFPN scheme is 

obtained by interchanging the position of the input I and the output O functions for the transition T  in the 13-

tuple. Additionally, by changing the position of the input and output functions, the relation mapped to the 

transition is transformed into its corresponding inverse relation. For example, for the relation consists_of in 

the KRFPN scheme its inverse relation is_part_of is used in the –KRFPN scheme, i.e., –

(consists_of)=is_part_of. Also, the co-domain of the associated function 𝑐: 𝑀 → [0,1] that assigns values to 

the tokens (see 5.1) is expanded by 𝑐𝑟: 𝑀 → [−1, 1] so that in the case of an exception, a token may be 

associated with a negative value. 

The procedure for the scene recognition is as follows. The results of the image interpretation at layer 𝑀𝐼1, 

after inconsistency checking, are the input to the scheme used for further image interpretation at the layer 𝑀𝐼2. 

The obtained elementary classes 𝐸𝐶𝑖 from 𝑀𝐼1(𝐼) are treated as components of an unknown scene class X.  

The elementary classes 𝐸𝐶𝑖 are mapped to the places {𝑝1, 𝑝2, … , 𝑝𝑛} using the function 𝛼−1: 𝐸𝐶𝑖 → 𝑝𝑘. If 

defined, the reliability based on a posterior probability of each elementary class 𝐸𝐶𝑖 can be used as the token 

value 𝑐𝑟(𝑚𝑙) in the place 𝑝𝑘, whose interpretations correspond to the given class 𝐸𝐶𝑖. Otherwise, a token 

value is set to 1. 

For instance, let us take an image 𝐼 depicted in Fig. 8. The results of the image interpretation at the layer 

𝑀𝐼1(𝐼) are elementary classes {𝑠𝑘𝑦, 𝑟𝑜𝑐𝑘, 𝑠𝑎𝑛𝑑, 𝑤𝑎𝑡𝑒𝑟} that exist in the knowledge base. Based on the Bayes 

classification rule (eq. 1) the degrees of truth are assigned: (sky {0.5}, sand ({0.7}), rock ({0.4}), water 

({0.6}). By using the function α−1 the initially marked places are determined (𝛼−1(sky) = p20, 𝛼−1(sand) = 

p18, 𝛼−1(rock) = p17, 𝛼−1(water) = p26). A small part of a –KRFPN scheme with initially marked places and 

the corresponding token value is given in Fig. 11.   

 



16 
 

grass 

p11

-(consists_of)   

t80

Seaside 

p45

tree

 p25

-(consists_of) 

t85

water

p26

-(consists_of)  

t86

0.40

0.95

cloud

 p6

-(consists_of)   

t79

0.40

sky

 p20

-(consists_of)  

t84

rock

p17

-(consists_of) 

t82

sand 

p18

-(consists_of)

t83
0.38

0.85

0.90

0.47

-(consists_of)  

t94

SceneAirplane

 p29

-(consists_of)  

t68

0.95

-(consists_of) 

t69

0.95

0.5

0.6

0.4
0.7

SceneBear

 p30

-(consists_of)  

t93

SceneShuttle

 p47

 

Figure 11. A small part of the –KRFPN scheme for the scene recognition for image depicted in Fig.8.  

According to the initially marked places and the corresponding degrees of truth, four root nodes π0
i, i =

1, . . . ,4 of the recognition trees will be formed: 

π0
1(p20, {0.5}), π0

2(p18, {0.7}), π0
3(p17, {0.4}), π0

4(p26, {0.6}). 

 

Fig. 12 shows four corresponding recognition trees in the -KRFPN scheme with enabled transitions, 

starting from the root node. By firing of the enabled transitions on the -KRFPN scheme, new nodes at the 

following higher level of the recognition tree are created and appropriate values of the tokens are obtained: 

𝑐𝑟(𝑚𝑘+1) = 𝑐𝑟(𝑚𝑘)𝑓(𝑡𝑙)  (6) 

where 𝑡𝑙 is the transition between concepts 𝐸𝐶𝑖  and 𝑆𝐶𝑙, 𝑐𝑟(𝑚𝑘) is the reliability of the elementary class 𝐸𝐶𝑖 

and 𝑓(𝑡𝑙) is computed in eq (4). Due to the simplicity of the example, only one level of the recognition tree is 

generated. Note that only the recognition tree with the root node π0
2  (Fig. 12.b)) directly corresponds to the 

small part of –KRFPN depicted in Fig. 11. The other recognition trees (Fig. 12.a), c) and d)) also contain leaf 

nodes corresponding to the scene classes that are part of the knowledge base but are not depicted in Fig. 11.  

 

a) 

 

b) 
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c) 

 

d) 

 The following steps of scene recognition are as follows. Each leaf node  πi
k in the recognition tree 

𝑘 = 1, 2, … , 𝑏 is represented by a vector of dimension |P|, where P is a set of places, so the index of a node in 

the recognition tree corresponds to the index of the vector component and the value of a node is assigned to a 

value of the vector component. For example, a node  𝜋1
2 = (p

45
, 0.595) (Fig. 12b)) is represented by the 

vector  𝝅1
2 = (0, 0 … 0,0.595, 0, . . ,0) so that all the vector components are assented to a value 0, except the 

45
th
 vector component, to which a node value of 0.595 is assigned. Accordingly, the total sum 𝒁 of all leaf 

nodes in all recognition trees is computed:  

𝒁 =  ∑ ∑ 𝝅𝑖
𝑘

𝑜𝑘

𝑖=1

𝑏

𝑘=1

. (7) 

where  𝝅𝑖
𝑘 is 𝑖-th leaf node in the 𝑘–th recognition tree, 𝑏 ≤ |𝑀| is the number of recognition trees,  

𝑜𝑘 ≤ |𝑃| is the total number of leaves in the recognition tree 𝑘. 

In this example there is 𝑏 = 4 recognition trees, the corresponding numbers of leaves are: 𝑜1 = 12, 𝑜2 =

2, 𝑜3 = 9, 𝑜4 = 11, and the total sum is: 

 𝒁 = ∑ ∑ 𝝅𝑖
𝑘𝑜𝑘

𝑖=1
4
𝑘=1 = ∑ 𝝅𝑖

112
𝑖=1 + ∑ 𝝅𝑖

22
𝑖=1 + ∑ 𝝅𝑖

39
𝑖=1 + ∑ 𝝅𝑖

411
𝑖=1  = (0…0, 0.36, 0.44, 0.09, 0.05, 0, 0.03, 0, 0.04, 

0, 0, 0.05, 0.03, 0.03, 0.04, 0, 0.16, 1.80, 0.05, 0.05, 1.11, 0, ...0).  

For example, the 30
th
 component of the vector Z with the value 0.44 is obtained by summing all the values 

of the nodes in all the recognition trees that correspond to the place p30 (i.e. 𝜋7
1, 𝜋2

2, 𝜋8
3, 𝜋9

4):  0.115 + 0.175 + 

0.052 + 0.102 = 0.44 

Then, a set of indices of elements with the highest sum 𝒁 = (𝑍1, 𝑍2, … , 𝑍|𝑃|) among all of the nodes in all 

the recognition trees is selected as:  

𝑖∗ =  𝑎𝑟𝑔 𝑚𝑎𝑥
𝑖 = 1,..,|𝑃|

{𝑍𝑖}. (8) 

 

In the case that there are several 𝑖 for which the same maximum value of {𝑍𝑖} is obtained, the set  𝐼∗ is created: 

𝐼∗ = {𝑖1
∗, 𝑖2

∗, … }. (9) 

 

A scene class assigned to a place with the max argument 𝑝𝑖: 𝑖 ∈ 𝐼∗ is chosen as the best match for a given 

set of elementary classes obtained during image interpretation at the layer 𝑀𝐼1. In this example, the 45
th
 

component of the vector Z has the maximum value 1.80. Therefore, a set of max arguments consists of only 

Figure 12. Recognition trees with enabled transitions for each root node 
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one element 𝑖1
∗ = 45, so only one scene class is chosen as the best match, i.e., the one that is assigned to a place 

with that max argument, 𝛼(p45) = Seaside. The next scene candidate is 𝛼(p48) = Inland with a value of 1.11. 

By merging all the classes that are so far associated with the image, from elementary classes to the scene 

class, the multi-layered interpretation of the image is formed. For example, a multi-layered interpretation of 

image 𝐼 (in Fig. 8) includes the results of the image interpretation at the layers 𝑀𝐼1 and 𝑀𝐼2: 𝑀𝐼(𝐼) =

𝑀𝐼1(𝐼) ∪ 𝑀𝐼2(𝐼) = {𝑠𝑘𝑦, 𝑟𝑜𝑐𝑘, 𝑠𝑎𝑛𝑑, 𝑤𝑎𝑡𝑒𝑟} ∪ { 𝑆𝑒𝑎𝑠𝑖𝑑𝑒}. 

8 INFERENCE OF MORE ABSTRACT CLASSES  

The obtained scene classes can be used as root nodes for the next inheritance process that will infer more 

abstract concepts from higher semantic levels (here referred as generalized and derived classes) either because 

they are directly linked with the concept or may be inferred by means of concepts at a higher level of 

abstraction (parents). 

To determine related, more abstract classes for a given scene class, the relations with its parents at higher 

levels of abstraction are inspected using an inheritance algorithm [Ribarić, Pavešić, 2009]. The procedure by 

which more abstract classes are inference will be illustrated using the example of scene class 𝑆𝑒𝑎𝑠𝑖𝑑𝑒 ∈ 𝑆𝐶 

that was obtained as a result of the recognition algorithm in Section 7. In Fig. 13, a part of a knowledge base is 

shown that includes information about the components of the class “Seaside” and its more abstract classes 

defined by expert. 
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Figure 13. A part of the knowledge base that shows the properties of the class “Seaside” and its parents 

 



19 
 

At the first step of the algorithm the appropriate place is determined by the function  𝛼−1(𝑆𝑒𝑎𝑠𝑖𝑑𝑒) = 𝑝45. 

A token value 𝑐(𝑚𝑙) is set to 1, so the corresponding root node of the inheritance tree is  𝜋0(𝑝45, {1.0}). Fig. 

14 shows a 3-level inheritance tree on the KRFPN scheme for the class ’Seaside’  that shows its more abstract 

classes (nodes within the ellipsis) as well as its properties. 

 

 

Figure 14. The inheritance tree for the concept “Seaside” 

To determine more abstract classes associated with the given class, the key nodes are those in the parent-

child relationship with the given class and statements formed along that arc. The nodes in parent-child 

relationship for the class ’Seaside’ are: 𝜋14(𝑝59, {0.7}), 𝜋15(𝑝60, {1.0}), 𝜋21(𝑝53, {1.0}) and 𝜋31(𝑝55, {1.0}) 

and the following applies: 𝛼(𝑝59) = 𝑉𝑎𝑐𝑎𝑡𝑖𝑜𝑛, 𝛼(𝑝60) = 𝐿𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒, 𝛼(𝑝53) = 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑠𝑐𝑒𝑛𝑒, 𝛼(𝑝55) =

𝑂𝑢𝑡𝑑𝑜𝑜𝑟 𝑠𝑐𝑒𝑛𝑒. The classes “Landscape”, “Natural scene” and “Outdoor scene” are a generalization of the 

class “Seaside”, while the class “Vacation” is a derived class that one can associate with the class “Seaside” 

using the relation is_associated_to. 

Thus, the result of a multi-layered image annotation for the image 𝐼 given in Fig. 8, after the generalization 

and the derived-concepts inference is:  

𝑀𝐼(𝐼) = 𝑀𝐼1(𝐼) ∪ 𝑀𝐼2(𝐼) ∪ 𝑀𝐼3(𝐼) ∪ 𝑀𝐼4(𝐼) =

{𝑠𝑘𝑦, 𝑟𝑜𝑐𝑘, 𝑠𝑎𝑛𝑑, 𝑤𝑎𝑡𝑒𝑟}  ∪ {𝑆𝑒𝑎𝑠𝑖𝑑𝑒} ∪ {𝐿𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒, 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑠𝑐𝑒𝑛𝑒, 𝑂𝑢𝑡𝑑𝑜𝑜𝑟 𝑠𝑐𝑒𝑛𝑒} ∪ { 𝑉𝑎𝑐𝑎𝑡𝑖𝑜𝑛}. 

 

Also, new concepts can be added to the knowledge. Some examples of such an extension are synonyms of 

the concepts defined in a scheme like Seacoast for Seaside or terms that are colloquially understood as 

synonyms like Forest or Logs for Trees. In these cases, the is_synonim_of  relation is defined between a class 

that is already defined in the knowledge base (e.g. Seaside) and the synonym that should be added (e.g., 

Seacoast). Fig. 15 shows the fuzzy-inheritance tree for the concept Seacoast, for which 

applies  𝛼−1(𝑆𝑒𝑎𝑐𝑜𝑎𝑠𝑡) = 𝑝57, so the corresponding root node of the inheritance tree is  𝜋0(𝑝57, {1.0}). 
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Figure 15. The inheritance tree for a synonym of Seacoast concept Seaside 

Inclusion of concepts at different levels of abstraction maps the organization of concepts from natural 

language to image annotation and facilitates the adjustment of the system to the user’s needs and expectations.  

9 EXPERIMENTAL RESULTS 

To evaluate the proposed model of a multi-layered image annotation a part of the Corel image dataset 

related to outdoor scenes (e.g., Landscape, Vehicles, Animals, Space) [Carbonetto et al, 2004] was used. 

The images were automatically segmented, based on the visual similarity of the pixels, using the 

normalized-cut algorithm. Every image segment was more precisely characterized by a set of 16 features 

based on the color in CIE L*a*b* color model, size, position, height, width and shape of the area [Duygulu et 

al, 2002]. 

The data set used for the experiment consists of 3960 segments obtained from 475 images of the outdoors. 

The most of images were segmented into approximately 10 regions. The data was divided into training (3160) 

and testing (800) subsets by a 10-fold holdout cross validation.  

Also, each image segment of interest was manually annotated with the first keyword from the set of 

corresponding keywords provided by [Carbonetto et al, 2004] and used as the ground truth for the training 

model. The vocabulary used to denote the image segments has 28 keywords related to natural and artificial 

objects such as 'airplane', 'bird', ‘lion’, ‘train’ etc. and landscape like 'ground', 'sky', ‘water’ etc. The keywords 

from the vocabulary correspond to the elementary classes. 

The results of the image classification of our MIAS system at layer 𝑀𝐼1 are compared with the ground truth 

and the precision and recall measures are shown in Fig. 16.  

The recall is the ratio of correctly predicted elementary classes (tp - true positive) and all elementary 

classes in the ground-truth data (tp + fn; fn - false negative): 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
. (10) 

The precision is the ratio of correctly predicted elementary classes (tp) and total number of elementary 

classes obtained from the automatic image interpretation at layer 𝑀𝐼1 of the MIAS (tp + fp; fp - false positive): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (11) 
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Figure 16. A precision/recall graph for the image automatic interpretation with MIAS at layer 𝑀𝐼1 

The proposed system MIAS for image interpretation at the layer 𝑀𝐼1 achieves an average precision of 

32.6% and average recall of 27.5%. The average precision is calculated as the average of all the values of 

precision that are obtained for each elementary class in the test set using the 10-fold cross validation. 

Similarly, the average recall is calculated as the average of all the values of recall that are obtained for each 

elementary class in the test set. Each elementary class in the graph (Fig. 16) is marked with class ID, so that ID 

1 corresponds to the elementary class 'airplane', ID 2 to the elementary class 'bear', ID 3 to elementary class 

'bird' and so on until ID 28 that corresponds to elementary class 'zebra'. The highest precision, over 56% was 

obtained for the elementary classes: ‘grass’- ID 11, ‘polar bear’ - ID 15, ‘rock’ - ID 16, ‘sky’ - ID 20 and 

‘tracks’ - ID 23. The highest recall, over 57% was obtained for the elementary classes: ‘grass’ - ID 11, 

‘ground’ - ID 12, ‘rock’ - ID 13, ‘sky’ - ID 20, ‘train’ - ID 24 and ‘trees’ - ID 25. For elementary classes ‘bear’ 

– ID 2, 'building' – ID 4, 'cheetah' – ID 5, 'coral' – ID 7, 'dolphin' – ID 8, 'fox' – ID 10 and 'zebra' – ID 28 

obtained value for both, precision and recall, is zero. Some of the reasons for this outcome are too few samples 

that we had available for the particular elementary class (e.g. for the class building we had only 24 segments, 

for the class dolphin only 20 segments), then the big diversity of features within the class (e.g. instances of 

class coral significantly differ in color) as well as errors in segmentation. 

The obtained result, given as outputs of MIAS at layer 𝑀𝐼1, is compared to the results of the models 

published in [Carbonetto et al. 2004]. The results of the automatic image annotation obtained for the 

mentioned set of images with the dMRF model defined in [Carbonetto et al. 2004] and the dInd model from 

[Duygulu et al. 2002] are published in [Carbonetto et al. 2004]. The dMRF model uses the method of Markov 

random fields for the automatic image annotation, while the dInd model is an example of a translation model 

that treats image annotation as the translation between two discrete languages. The authors have reported the 

precision for the task of automatic image annotation for each of 28 keywords in the vocabulary achieved by 

both models. Comparing the results of the automatic annotation on images related to outdoor scenes, the 

dMRF model achieves an average precision of 21%, while the dInd model achieves an average precision of 

20%. As specified in the Table 1, average precision of MIAS at layer MI1 exceeds the precision of both 

models although our system has correctly predicted fewer classes, 21 classes out of 28 possible. 

Table 1. Comparison of the results achieved with MIAS at 𝑀𝐼1, dInd, dMRF 

Models MIAS – MI1 dInd dMRF 

Number of correctly predicted classes 21 23 24 

Average precision 32.6% 19.9% 21% 
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Comparing the results presented in Table 1, it should be noted that, for learning, the models dInd and 

dMRF used image labels, while our approach uses labels of the image segments. Because of the supervised 

learning approach, somewhat better results were expected. However, the achieved difference for the average 

precision is significant, although the dMRF model took into account the context. Note that the given results of 

our system MIAS at layer 𝑀𝐼1 (represented in Table 1.) are without any checking for inconsistency.  

Generally, the results achieved by image automatic annotation models on outdoor image domains are 

relatively poor and the question is whether they can meet customer requirements when retrieving or organizing 

images. Often, the results of automatic annotation depend on the quality of the segmentation, so when an 

image has a lot of segments and when an object is over segmented, the results can include labels that do not 

correspond to the context of an image. Here, by using the facts from the knowledge base and the relationships 

between elementary classes, the obtained results of the image interpretation at the layer 𝑀𝐼1 are analyzed with 

fuzzy inheritance algorithms in order to purify the classification results from class labels that do not match the 

likely context of the image. Using inconsistency checking, those elementary classes that are obtained as a 

result of the image interpretation at layer 𝑀𝐼1and did not fit the likely context are discarded. As a 

consequence, the precision of the image interpretation at layer 𝑀𝐼1 is increased up to 43%. A further 

improvement of the precision could be achieved by defining additional relationships between the elementary 

classes.  

Afterwards, automatic image interpretation at layer 𝑀𝐼2 of the MIAS is performed by the fuzzy-

recognition algorithm, using elementary classes obtained as the results of image interpretation at layer 𝑀𝐼1 and 

knowledge about a particular domain. Obtained precision of automatic image interpretation at layer 𝑀𝐼2 is 

61% and the recall is 55%. The results at the layer 𝑀𝐼2  depend on the results at layer 𝑀𝐼1. For those scenes 

for which there is one main object class which is highly discriminant for that scene (e.g train for SceneTrain), 

it is crucial to detect that object. In this kind of scenes background objects that are common to most scenes do 

not play an important role, but in scenes without one prominent object (e.g. Sea, Inland) they are important. 

Additionally, the inheritance algorithm is used to infer generalized classes related to a scene class that make 

the interpretation at the layer 𝑀𝐼3 and derived classes at the layer 𝑀𝐼4. In Table 2, some examples of a multi-

layered image annotation obtained by MIAS are shown. 

Table 2. Examples of multi-layered image annotation by MIAS 

Image example: 

    

Multi-layered 

image 

annotation 

𝑀𝐼1 ‘shuttle' - ID 19 

'train' – ID 24, 'tracks '–

ID 23, 'sky' - ID 20 'grass' – ID 11, 'tiger'- ID 22 

'water' – ID 26, 'sand' – 

ID 18, 'sky’ - ID 20, 'road'-

ID 16 

𝑀𝐼2 'Shuttle Scene', 'Train Scene', 'Tiger Scene', 'Seaside', 

𝑀𝐼3 
'Vehicle', 'Man-Made 

Object', 'Outdoor’ 

'Vehicle', 'Man-Made 

Object', 'Outdoor’ 

'Wildcat', 'Wildlife', 

'Natural Scenes', 'Outdoor 

Scene' 

'Natural Scenes', 'Outdoor 

Scene' 

𝑀𝐼4 ‘Space’ ‘Transport’ ‘Savannah’ ‘Vacation’ 
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10 CONCLUSION 

The aim of this paper is to present the knowledge based multi-layered image annotation system MIAS. In 

order to bridge the semantic gap between visual content of an image and its semantics, the MIAS deals with 

visual content (low level features) and semantic (elementary, scene, generalized and derived classes) image 

representation layers. 

The semantic layers are inspired by human image interpretation. The first semantic layer of the image 

annotation contains concepts obtained from the classification of the image segments. For higher layers that 

require a larger amount of knowledge, a fuzzy knowledge-base and a fuzzy inference engine are used. A 

hierarchical organization of the knowledge base facilitates its compatibility with various classification 

methods, so that a Bayesian classifier is used for the image-segments classification.  

The fuzzy knowledge base is built using a knowledge representation scheme based on Fuzzy Petri Nets 

(KRFPN). The facts in the knowledge base are defined using data in the learning set. The facts from the 

knowledge base are visualized by bipartite directed graphs. The fuzzy inference engine supports inheritance 

and recognition inference procedures. The inheritance procedure at the level 𝑀𝐼1 is used for inconsistency 

checking of the classification results of image segments, and for inferring more abstract classes such as 

generalized and derived classes. The recognition procedure is used for scene recognition at the 𝑀𝐼2 level. The 

complexity of both inference procedures is O(nm), where n is the number of places (concepts) and m is the 

number of transitions (relations) in the knowledge base. 

In case of image annotation, it is important to be able to handle the uncertainty of the image-segments 

classification and the incompleteness of knowledge.  

The ability of the MIAS to draw conclusions from imprecise, fuzzy knowledge turned out to be an 

important property.  

Comparing the obtained results of the image annotation at layer 𝑀𝐼1 of the MIAS with the published results 

of automatic image annotations [Duygulu et al. 2002, Carbonetto et al. 2004], on the same set of images as 

well as using the same image features, it has been shown that the supervised learning approach provides 

significantly better results than the unsupervised methods used in [Duygulu et al. 2002, Carbonetto et al. 

2004], even when they take into account the context [Carbonetto et al. 2004].  

Furthermore, the result obtained with our approach at layer 𝑀𝐼1, which includes inconsistency checking, 

considering the knowledge facts, significantly improves the average precision. Additionally, the proposed 

system supports the recognition of scenes and conclusions about the related concepts at different levels of 

abstraction.  

This research is oriented to the domain of outdoor images, so the knowledge base includes knowledge that 

is relevant to that domain. It should be mentioned that the proposed architecture of the MIAS system is general 

and can be used for different domains by extending and adapting the fuzzy knowledge base. 
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