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ABSTRACT
Various diseases are diagnosed using medical imaging used for analysing internal anatomical
structures. However, medical images are susceptible to noise introduced in both acquisition
and transmission processes. We propose an adaptive data-driven image denoising algorithm
based on an improvement of the intersection of confidence intervals (ICI), called relative ICI
(RICI) algorithm. The 2D mask of the adaptive size and shape is calculated for each image
pixel independently, and utilized in the design of the 2D local polynomial approximation
(LPA) filters. Denoising performances, in terms of the PSNR, are compared to the original ICI-
based method, as well as to the fixed sized filtering. The proposed adaptive RICI-based
denoising outperformed the original ICI-based method by up to 1.32 dB, and the fixed size
filtering by up to 6.48 dB. Furthermore, since the denoising of each image pixel is done
locally and independently, the method is easy to parallelize.

ARTICLE HISTORY
Received 24 January 2018
Accepted 4 June 2018

KEYWORDS
Adaptive filtering;
intersection of confidence
intervals; relative intersection
of confidence intervals; local
polynomial approximation;
image enhancement; image
denoising; medical imaging;
magnetic resonance imaging

Introduction

Since its introduction in 1973, magnetic resonance
imaging (MRI) led to revolutionary discoveries in bio-
medical applications, especially in medical diagnostics
[1]. Today, MRIs are commonly used in medical
radiology for capturing images of internal human
anatomy and physiological processes in search for
possible diseases [2]. However, recorded images are
usually of low quality requiring some numerical proces-
sing for improving their readability. Artefacts in MRIs
are often caused by patient movements (which result
in distortions in the captured data similar to blurring
of photographs), metal implants (which affect mag-
netic fields in their vicinity causing dark patches or
shadows in the recorded images) and noise (which
blurs edges of adjacent soft tissues) [3].

Furthermore, MRI images, as well as X-ray images, are
often of low contrast and high homogeneity [4]. In order
to improve image contrast, X-ray images require patient
exposures to higher radiation doses. On the other hand,
the price paid to improveMRI image contrast is imaging
time [4]. Furthermore, there is also a compromise
between image contrast and noise level, as well as blur-
ring ofMRIs. Namely, when selecting a certain imagining
method, one has to specify the maximal acceptable
noise level and adjust other imagining factors in order
to achieve them with minimum exposure, imaging
time and effect on other image characteristics [4].

In general, noise in MRIs is often caused by radiofre-
quency pulses, radiofrequency coil, field strength, voxel
volume and/or receiver bandwidth [5]. It may

significantly reduce the reliability of MRIs leading to
possible misinterpretations and incorrect diagnoses,
thus, denoising preprocessing (such that tissue con-
tours and textures are preserved while the noise is
smoothed) is an important requirement preceding
their analysis (such as MRI segmentation and pattern
recognition).

MRI denoising approaches are either acquisition-
based noise reduction or post-acquisition based
image filtering. The first approaches are based on hard-
ware improvements often resulting in an increase of
image capturing duration or reduction of spatial resol-
ution. Thus, post-acquisition image improvement is
often the only way to achieve the desired MRI quality
[6,7]. The post-acquisition MRI denoising methods
may be divided into linear and non-linear filtering
methods. Linear methods, for instance, estimate
noise-free pixel values by weighted averaging of the
pixels in the vicinity of the considered pixel. Unfortu-
nately, smoothing the noise often leads to degrading
other image characteristics, such as object edges. On
the other hand, non-linear methods often outperform
linear methods in preserving object edges while
degrading fine image structures [5].

This paper proposes an adaptive method for MRI
image denoising based on 2D spatial filters designed
using the local polynomial approximation (LPA) and
the improved intersection of confidence intervals (ICI)
algorithm called the relative intersection of confidence
intervals (RICI) algorithm. The data-driven LPA-RICI
method has been shown to perform well in noise-
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free pixel estimation since the RICI algorithm detects
near optimal size and shape of the 2D vicinity neigh-
bouring the considered pixel [8,9]. The detected 2D
regions are then utilized as binary masks for MRI
image segmentation and estimation of the noise-free
pixel value by applying LPA weighted filtering to the
extracted regions. Owing to its adaptivity to local
image content, the proposed denoising method was
shown to efficiently suppress additive noise and, at
the same time, preserve tissues contours and borders
avoiding blurring artefacts. The procedure is repeated
independently for each pixel. Hence, the compu-
tational efficiency of MRI denoising can be easily
improved by parallelized implementation of the pro-
posed method.

The proposed 2D LPA-RICI method was tested on
real-life MRI images outperforming the original ICI
based method and other fixed size filtering
methods.

The paper is organized as follows. Section 2 presents
the original ICI rule and its improvement (the RICI rule)
extended to 2D image processing. Section 3 gives the
experimental results for tested medical images, as
well as detailed elaboration on the achieved results.
The conclusion is found in Section 4.

The ICI rule and its improvement

The ICI rule

This section presents the original one-dimensional ICI
algorithm and its novel modification called the RICI
algorithm, both upgraded to process two-dimensional
images.

For each signal sample n, the one-dimensional LPA-
ICI method introduces a set of K estimators H with an
increasing size hk [8,9]:

H = {h1 , h2 , · · · , hK }, (1)

and a corresponding set of confidence intervals:

Dhk (n) = [ Lk(n), Uhk (n)], (2)

where 1≤ k≤ K. Upper Uhk and lower Lhk (n) limits of the
confidence interval are defined as [8,9]:

Uhk (n) = ŷhk (n)+ G shk (n), (3)

Lhk (n) = ŷhk (n)− Gshk (n), (4)

where parameter Γ defines the confidence level, shk (n)
stands for the standard deviation of the estimation
error, and ŷhk (n) is calculated as the LPA weighted
average of k samples neighbouring the considered
sample [8,9].

Next, the ICI rule tracks the values of the smallest
upper and the largest lower confidence intervals
limits [8,9]:

Uhk (n) = mini=1, ...,kUhi (n), (5)

�Lhk (n) = maxi=1,...,kLhi (n), (6)

as long as the following criterion is met:

�Lhk (n) ≤ Uhk (n), (7)

Namely, confidence intervals are calculated as long as
all previous k intervals are overlapping (or until the
end of the signal is reached). Finally, the optimal esti-
mator size is determined as the largest k for which all
previous confidence intervals, including k-th interval,
are overlapping [8,9].

As demonstrated in [10], estimate error variance is
increased by small hk values and, at the same time, the
estimation error bias is decreased. On the other hand,
large hk values result in a decreasing estimate error var-
iance and an increase of its bias [10]. The aforesaid adap-
tive ICI basedalgorithm isused to calculate themaximalhk
which provides an optimal trade-off between the esti-
mation error variance and the bias. In simple terms, a
properG valueensures selecting the largest vicinityneigh-
bouring the considered signal sample (such that the LPA
fitswell to data)which results in an optimal noise smooth-
ing effect [10]. To justify the previous assertion, let us con-
sider the LPA estimation error calculated as:

ehk (n) = |y(n)− ŷhk (n)|, (8)

where y(n) stands for a noise-free signal sample and ŷhk (n)
represents its LPA estimate. The estimation error can be
written as a sum of the bias and zero-mean random
error [10]:

ehk (n) = bhk (n)+ e0hk (n). (9)

Therefore, the following inequality is true [10]:

ehk (n) ≤ |�bhk (n)| + |e0hk (n)|, (10)

where |�bhk (n)| represents the maximal value of |bhk (n)|
and e0hk (n) is, in case of the Gaussian noise, zero-mean
estimation error with standard deviation shk (n).

Figure 1. Illustration of the ICI rule tracking the intersection of
confidence intervals.
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Additionally, the following inequality holds true with
probability p = 1− a:

|e0hk (n)| ≤ x1−a/2 · shk (n), (11)

where 1− a/2 stands for (1− a/2)-th qantile of the
normal distribution N (0, 1) [10]. In other words, the
estimation error e0hk (n) is found inside the interval

[− x1−a/2, + x1−a/2] with the probability p. Based on
the Equations (10) and (11), it follows that [10]:

|ehk (n)| ≤ |�bhk (n)| + x1−a/2 · shk (n) (12)

holds true with the same probability p = 1− a [10].
The optimal hk , denoted as h∗, is chosen as the one pro-
viding optimal estimation error bias to the variance
trade-off, such that hk ≤ h∗. Hence the following

Figure 2. Flowchart of the proposed LPA-RICI based MRI denoising method.
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expression is true [10]:

|ehk (n)| ≤ G · shk (n). (13)

Consequently, the inequality (13) can be written as:

|y(n)− ŷhk (n)| ≤ G · shk (n), (14)

or as

ŷhk (n)− G · shk (n) ≤ y(n) ≤ ŷhk (n)+ G · shk (n), (15)

where ŷhk (n)− G · shk (n) stands for the lower confi-
dence interval limit Lhk (n) and ŷhk (n)+ G · shk (n) for
the upper confidence interval limit Uhk (n), as defined
in Equations (3) and (4). Since both expressions
Equations (11) and (14) are true with the same prob-
ability p, we can claim with that same probability that
y(n) is within the interval ŷhk (n)+ G · shk (n) for
hk ≤ h∗ [10]. In simple terms, nonempty intersection
of all subsequent confidence intervals ensures
hk ≤ h∗. On the other hand, if intersection of all pre-
vious confidence intervals is an empty set, it means
that hk . h∗ [10]. Thereby, the largest hk (as close to
h∗ as possible) is to be chosen as the one giving the
near optimal balance between the estimation error var-
iance and the bias, as required by the Equation (7).

An illustration of tracking the intersection of confi-
dence intervals by the ICI rule is shown in Figure 1.
As it can be seen, the first four confidence intervals
have common points, i.e. their intersection is none-
mpty. Since the next confidence interval is not overlap-
ping with all four of the previous confidence intervals,
the ICI rule results in h4 being chosen as the proper esti-
mator size.

Improved ICI Rule

The performances of the ICI algorithm are highly
affected by the chosen G value. Namely, too large G

values result in signal oversmoothing (meaning that
the noise is well removed but object edges are
blurred). On the other hand, too small G values cause
signal undersmoothing (i.e. significant amount of
noise is left in the image) [8,9].

Hence, we introduce a modification of the ICI algor-
ithm shown to be highly robust to suboptimal G selec-
tions [11–13]. The modified algorithm, called the RICI
algorithm, was further extended to 2D denoising of
MRI images. The proposed method tracks the amount
of overlapping of all previous confidence intervals

Figure 3. Examples of the regions calculated by the proposed 2D LPA-RICI method. (a) Quadrilateral region. (b) Octagonal region.
(c) Hexadecagonal region.
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and with respect to the length of the current confi-
dence interval, defined as [11–13]:

Rhk (n) =
Uhk (n)− �Lhk (n)

Uhk (n)− Lhk (n)
. (16)

It is then used as an additional criterion for selecting
the proper estimator size, such that [11–13]:

Rhk (n) ≥ Rc , (17)

where Rc denotes the preset data-driven threshold
[11]. In other words, unlike the ICI algorithm which
requires just the existence of the overlapping of the
confidence intervals, the proposed RICI based algor-
ithm requires a certain percentage of overlapping

(defined by the Equation (17)). Owing to this additional
requirement, the RICI algorithm allows selecting larger
G values (ensuring efficient noise removal) while
additional criterion given in Equation (17) prevents
from blurring artefacts and ensures object edge and
contour preserving.

ICI and RICI rule in image processing

Also, here we propose upgrading the original ICI
algorithm and its improved version (the RICI algor-
ithm), defined for 1D signal processing, to 2D
image processing. Namely, instead of detecting the
adaptive data-driven sequence of likely samples

Figure 4. Abdomen MRI scan. (a) Original noise-free image. (b) Noisy image (AWGN with σ = 25). (c) Image denoised using the LPA-
RICI method (quadrilateral region, Г = 1.7, Rc = 0.9). (d) Image denoised using the LPA-RICI method (octagonal region, Г = 1.7, Rc =
0.9). (e) Image denoised using the LPA-RICI method (hexadecagonal region, Г = 1.7, Rc = 0.9).
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neighbouring the considered sample in 1D signals,
we propose detecting the adaptive data-driven 2D
regions of likely pixels in vicinity of the analysed
pixel (as shown in the methods flowchart given in
Figure 2).

In order to do so, the upper and lower interval limits
Uhk (n) and Lhk (n), defined in Equations (3) and (4), are

extended to Uhk (i, j) and Lhk (i, j) for the purpose of
image processing, where i and j stand for image pixel
indices.

Thus, the adaptive 2D regions (varying in size and
shape from pixel to pixel depending on image
content) are obtained and utilized to form masks for
image segmentation and extraction of the region of
interest in vicinity of the considered pixel.

Next, denoised pixel value is estimated using the 2D
LPA based weighted averaging of the pixels in the
detected region. The same procedure is repeated for
each image pixel separately. Note also that this is one
of the important advantages of the proposed
method, since the 2D LPA-RICI algorithm is an excellent
candidate for parallelized implementation in order to
improve its computational efficiency.

The size of the adaptive 2D regions used in this
paper was calculated based on the two, four and
eight lines which form quadrilateral, octagonal and
hexadecagonal regions, respectively. An example of
each region is given in Figure 3.

The obtained results using both 2D LPA-ICI and 2D
LPA-RICI methods are presented in the next section.

Results

The proposed adaptive 2D LPA-RICI method was
applied to two test MRI images (an abdomen and a
knee MRI) and compared to adaptive 2D LPA-ICI and
fixed size filtering methods. The obtained results
were compared in terms of the peak signal-to-noise
ratio (PSNR).

Table 1. PSNRs of the abdomen MRI denoised using the LPA-
ICI method, LPA-RICI method and fixed size filtering (best
results are marked in bold).

Region Г Rc

PSNR [dB]

σ Noisy image Fixed ICI RICI

Quad. 1.7 0.9 20 31.12 32.40 36.51 37.24
Octa. 1.7 0.9 20 31.12 32.40 35.51 36.41
Hexa. 1.7 0.9 20 31.12 32.40 32.51 32.70
Quad. 1.7 0.9 25 30.65 32.11 36.29 36.97
Octa. 1.7 0.9 25 30.65 32.11 35.20 36.28
Hexa. 1.7 0.9 25 30.65 32.11 32.61 32.83
Quad. 1.7 0.9 30 30.34 31.74 36.34 36.82
Octa. 1.7 0.9 30 30.34 31.74 35.12 36.30
Hexa. 1.7 0.9 30 30.34 31.74 32.74 33.01
Quad. 1.6 0.6 20 31.12 32.40 36.66 37.26
Octa. 1.6 0.6 20 31.12 32.40 35.48 36.31
Hexa. 1.6 0.6 20 31.12 32.40 32.53 32.83
Quad. 1.6 0.6 25 30.65 32.11 36.42 36.93
Octa. 1.6 0.6 25 30.65 32.11 35.27 36.31
Hexa. 1.6 0.6 25 30.65 32.11 32.64 32.83
Quad. 1.6 0.6 30 30.34 31.74 36.14 36.75
Octa. 1.6 0.6 30 30.34 31.74 35.26 36.58
Hexa. 1.6 0.6 30 30.34 31.74 32.79 32.91
Quad. 1.5 0.8 20 31.12 32.40 36.78 37.16
Octa. 1.5 0.8 20 31.12 32.40 35.65 36.56
Hexa. 1.5 0.8 20 31.12 32.40 32.57 32.74
Quad. 1.5 0.8 25 30.65 32.11 36.51 36.92
Octa. 1.5 0.8 25 30.65 32.11 35.48 36.36
Hexa. 1.5 0.8 25 30.65 32.11 32.67 32.83
Quad. 1.5 0.8 30 30.34 31.74 36.45 36.69
Octa. 1.5 0.8 30 30.34 31.74 35.44 36.37
Hexa. 1.5 0.8 30 30.34 31.74 32.81 33.03

Table 2. Comparison of the PSNRs for abdomen MRI denoised by the 2D LPA-ICI, 2D LPA-RICI and fixed size filtering methods.

Region Г| Rc/|σ Fixed vs. noisy

PSNR [dB]

ICI vs. noisy RICI vs. noisy ICI vs. fixed RICI vs. fixed RICI vs. ICI

Quad. 1.7|0.9|20 1.28 5.39 6.12 4.11 4.84 0.73
Octa. 1.7|0.9|20 1.28 4.39 5.29 3.11 4.01 0.9
Hexa. 1.7|0.9|20 1.28 1.39 1.42 0.11 0.14 0.03
Quad. 1.7|0.9|25 1.46 5.64 6.32 4.18 4.86 0.68
Octa. 1.7|0.9|25 1.46 4.55 5.63 3.09 4.17 1.08
Hexa. 1.7|0.9|25 1.46 1.96 2.02 0.5 0.56 0.06
Quad. 1.7|0.9|30 1.4 6 6.48 4.6 5.08 0.48
Octa. 1.7|0.9|30 1.4 4.78 5.96 3.38 4.56 1.18
Hexa. 1.7|0.9|30 1.4 2.4 2.51 1 1.11 0.11
Quad. 1.6|0.6|20 1.28 5.54 6.14 4.26 4.86 0.6
Octa. 1.6|0.6|20 1.28 4.36 5.19 3.08 3.91 0.83
Hexa. 1.6|0.6|20 1.28 1.41 1.55 0.13 0.27 0.14
Quad. 1.6|0.6|25 1.46 5.77 6.28 4.31 4.82 0.51
Octa. 1.6|0.6|25 1.46 4.62 5.66 3.16 4.2 1.04
Hexa. 1.6|0.6|25 1.46 1.99 2.05 0.53 0.59 0.06
Quad. 1.6|0.6|30 1.4 5.8 6.41 4.4 5.01 0.61
Octa. 1.6|0.6|30 1.4 4.92 6.24 3.52 4.84 1.32
Hexa. 1.6|0.6|30 1.4 2.45 2.49 1.05 1.09 0.04
Quad. 1.5|0.8|20 1.28 5.66 6.04 4.38 4.76 0.38
Octa. 1.5|0.8|20 1.28 4.53 5.44 3.25 4.16 0.91
Hexa. 1.5|0.8|20 1.28 1.45 1.53 0.17 0.25 0.08
Quad. 1.5|0.8|25 1.46 5.86 6.27 4.4 4.81 0.41
Octa. 1.5|0.8|25 1.46 4.83 5.71 3.37 4.25 0.88
Hexa. 1.5|0.8|25 1.46 2.02 2.05 0.56 0.59 0.03
Quad. 1.5|0.8|30 1.4 6.11 6.35 4.71 4.95 0.24
Octa. 1.5|0.8|30 1.4 5.1 6.03 3.7 4.63 0.93
Hexa. 1.5|0.8|30 1.4 2.47 2.77 1.07 1.37 0.3
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The noise-free abdomen MRI image (with resolution
960 × 720) is given in Figure 4(a). Next, noisy image cor-
rupted by the additive white Gaussian noise (AWGN)
with standard deviation σ = 25 is shown in Figure 4
(b). Figure 4(c, d and e) present images denoised
using the algorithm based on the RICI method.
Namely, Figure 4(c) is obtained using the quadrilateral

regions, Figure 4(d) is obtained using the octagonal
regions, and Figure 4(e) is obtained using the hexade-
cagonal regions.

The results for denoised abdomen MRI images, in
terms of the PSNR, are shown in Table 1 with respect
to various Г and Rc values for different noise levels.
The first column of the table provides the regions

Figure 5. Knee MRI scan. (a) Original noise-free image. (b) Noisy image (AWGN with σ = 25). (c) Image denoised using the LPA-RICI
method (quadrilateral region, Г = 1.7, Rc = 0.9). (d) Image denoised using the LPA-RICI method (octagonal region, Г = 1.7, Rc = 0.9).
(e) Image denoised using the LPA-RICI method (hexadecagonal region, Г = 1.7, Rc = 0.9).
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(quadrilateral, octagonal or hexadecagonal) followedby
the second and the third column rendering parameters
Г and Rc used in denoising by the proposed 2D LPA-RICI.
The fourth column represents standard deviations of
AWGN followed by the fifth column which provides
the PSNR of the noisy image. The sixth column gives
the PSNR of the MRI image denoised using the fixed
size filtering. The last two columns render the PSNR of

images denoised using the ICI based method and the
RICI based method, respectively.

Table 2 provides the comparison of the 2D LPA-ICI,
2D LPA-ICI and fixed size filtering for the abdomen
MRI. As it can be seen, both ICI and RICI based are sig-
nificantly more efficient than denoising based on the
fixed size filtering. Namely, the fixed size filtering
improved image PSNR by up to 1.46 dB when com-
pared to the noisy image. On the other hand, 2D
LPA-ICI filtering increased the PSNR of the denoised
MRI image by up to 6.11 dB, while its modification
(2D LPA-RICI method) improved the PSNR by up to
6.48 dB. Thus, the adaptive method based on the RICI
algorithm has significantly improved denoised image
quality both in terms of the PSNR and visually (as it
can be seen in Figure 4). Furthermore, the ICI based
adaptive filtering outperformed the fixed size filtering
by up to 4.71 dB. On the other hand, the RICI based
adaptive method outperformed the fixed size filtering
up to 5.08 dB.

The knee MRI images (resolution of which is 1024 ×
1024) are shown in Figure 5. Figure 5(a) shows the orig-
inal noise-free MRI image, followed by Figure 5(b)
showing the noisy image corrupted by the AWGN
with standard deviation σ = 25. Figure 5(c), 5(d) and 5
(e) present the denoised images obtained using the
2D LPA-RICI method with quadrilateral, octagonal and
hexadecagonal regions, respectively.

Denoising results for knee MRI images are presented
in Table 3. As for the abdomen MRI, the adaptive ICI
and RICI based methods significantly outperformed
the fixed size filtering. Furthermore, the RICI based
method also outperformed the ICI based method.

Table 3. PSNRs of the knee MRI denoised using the LPA-ICI
method, LPA-RICI method and fixed size filtering.

Region Г Rc

PSNR [dB]

σ Noisy image Fixed ICI RICI

Quad. 1.7 0.9 20 31.56 32.92 38.33 39.19
Octa. 1.7 0.9 20 31.56 32.92 36.83 38.03
Hexa. 1.7 0.9 20 31.56 32.92 33.32 33.42
Quad. 1.7 0.9 25 31.14 32.87 37.95 38.73
Octa. 1.7 0.9 25 31.14 32.87 36.57 37.75
Hexa. 1.7 0.9 25 31.14 32.87 33.34 33.58
Quad. 1.7 0.9 30 30.84 31.93 37.57 38.24
Octa. 1.7 0.9 30 30.84 31.93 36.38 37.51
Hexa. 1.7 0.9 30 30.84 31.93 33.4 33.71
Quad. 1.6 0.6 20 31.56 32.92 38.49 39.31
Octa. 1.6 0.6 20 31.56 32.92 37.03 38.2
Hexa. 1.6 0.6 20 31.56 32.92 33.35 33.64
Quad. 1.6 0.6 25 31.14 32.87 38.02 38.68
Octa. 1.6 0.6 25 31.14 32.87 36.77 37.85
Hexa. 1.6 0.6 25 31.14 32.87 33.4 33.8
Quad. 1.6 0.6 30 30.84 31.93 37.79 38.41
Octa. 1.6 0.6 30 30.84 31.93 36.52 37.63
Hexa. 1.6 0.6 30 30.84 31.93 33.43 33.74
Quad. 1.5 0.8 20 31.56 32.92 38.67 39.03
Octa. 1.5 0.8 20 31.56 32.92 37.19 38.28
Hexa. 1.5 0.8 20 31.56 32.92 33.36 33.64
Quad. 1.5 0.8 25 31.14 32.87 38.18 38.75
Octa. 1.5 0.8 25 31.14 32.87 36.91 37.87
Hexa. 1.5 0.8 25 31.14 32.87 33.41 33.85
Quad. 1.5 0.8 30 30.84 31.93 37.82 38.39
Octa. 1.5 0.8 30 30.84 31.93 36.67 37.67
Hexa. 1.5 0.8 30 30.84 31.93 33.48 33.91

Table 4. Comparison of the PSNRs for knee MRI denoised by the 2D LPA-ICI, 2D LPA-RICI and fixed size filtering methods.

Region Г| Rc/|σ Fixed vs. noisy

PSNR [dB]

ICI vs. noisy RICI vs. noisy ICI vs. fixed RICI vs. fixed RICI vs. ICI

Quad. 1.7|0.9|20 1.36 6.77 7.63 5.41 6.27 0.86
Octa. 1.7|0.9|20 1.36 5.27 6.47 3.91 5.11 1.2
Hexa. 1.7|0.9|20 1.36 1.76 1.86 0.4 0.5 0.1
Quad. 1.7|0.9|25 1.73 6.81 7.59 5.08 5.86 0.78
Octa. 1.7|0.9|25 1.73 5.43 6.61 3.7 4.88 1.18
Hexa. 1.7|0.9|25 1.73 2.2 2.44 0.47 0.71 0.24
Quad. 1.7|0.9|30 1.09 6.73 7.4 5.64 6.31 0.67
Octa. 1.7|0.9|30 1.09 5.54 6.67 4.45 5.58 1.13
Hexa. 1.7|0.9|30 1.09 2.56 2.87 1.47 1.78 0.31
Quad. 1.6|0.6|20 1.36 6.93 7.75 5.57 6.39 0.82
Octa. 1.6|0.6|20 1.36 5.47 6.64 4.11 5.28 1.17
Hexa. 1.6|0.6|20 1.36 1.79 2.08 0.43 0.72 0.29
Quad. 1.6|0.6|25 1.73 6.88 7.54 5.15 5.81 0.66
Octa. 1.6|0.6|25 1.73 5.63 6.71 3.9 4.98 1.08
Hexa. 1.6|0.6|25 1.73 2.26 2.66 0.53 0.93 0.4
Quad. 1.6|0.6|30 1.09 6.95 7.57 5.86 6.48 0.62
Octa. 1.6|0.6|30 1.09 5.68 6.79 4.59 5.7 1.11
Hexa. 1.6|0.6|30 1.09 2.59 2.9 1.5 1.81 0.31
Quad. 1.5|0.8|20 1.36 7.11 7.47 5.75 6.11 0.36
Octa. 1.5|0.8|20 1.36 5.63 6.72 4.27 5.36 1.09
Hexa. 1.5|0.8|20 1.36 1.8 2.08 0.44 0.72 0.28
Quad. 1.5|0.8|25 1.73 7.04 7.61 5.31 5.88 0.57
Octa. 1.5|0.8|25 1.73 5.77 6.73 4.04 5 0.96
Hexa. 1.5|0.8|25 1.73 2.27 2.71 0.54 0.98 0.44
Quad. 1.5|0.8|30 1.09 6.98 7.55 5.89 6.46 0.57
Octa. 1.5|0.8|30 1.09 5.83 6.83 4.74 5.74 1
Hexa. 1.5|0.8|30 1.09 2.64 3.07 1.55 1.98 0.43
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A comparison of the obtained results for knee MRI
images is given in Table 4. The first three columns in
Table 4 give an increase in the PSNR when compared
to the noisy image for fixed size filtering, the ICI
based method and the RICI based method, respect-
ively. Namely, the fixed size filtering increased the
denoised MRI image PSNR by up to 1.73 dB, the 2D
LPA-ICI filtering increased the PSNR by up to 7.11 dB
and the adaptive 2D LPA-RICI based filtering increased
the denoised PSNR by up to 7.75 dB, when compared
to the noisy image. Furthermore, the ICI based
filtering outperformed the fixed size filtering by up to
5.89 dB. On the other hand, the 2D LPA-RICI filtering
outperformed the 2D LPA-ICI filtering by up to 1.20 dB.

The results given in Tables 1–4 show that the pro-
posed 2D LPA-RICI based method is a powerful tool
for MRI image denoising, significantly outperforming
fixed size filtering. Furthermore, it was also shown
that the proposed modification of the ICI based
method (called 2D LPA-RICI) outperforms the original
2D LPA-ICI for all tested MRI images and noise levels.

Also, it is important to note that the larger number
of the polygonal angles in adaptive 2D regions used
in the adaptive ICI and RICI based algorithms does
not necessarily result in significant improvements in
the MRI image denoising results.

In addition, since denoising each image pixel is done
independently, the method is easy to parallelize in
order to reduce its execution time.

Conclusion

An adaptive method for MRI image denoising was pro-
posed in the paper. The method is based on a modifi-
cation of the ICI algorithm called the RICI algorithm.
The RICI algorithm was further extended to 2D image
denoising. The 2D LPA-ICI method was shown to
increase PSNRs of denoised MRI images by up to
7.11 dB when compared to noisy images outperform-
ing fixed size filtering by up to 5.89 dB. In contrast,
the 2D LPA-RICI method was shown to increase PSNRs
of denosied MRI images by up to 7.75 dB when com-
pared to the noisy image, outperforming the 2D LPA-
ICI method by up to 1.32 dB and fixed size filtering by
up to 6.48 dB. This improvement is caused by calculat-
ing the size and shape of 2D regions locally and inde-
pendently for each image pixel. Thus, the method is
easy to parallelize in order to reduce its execution
time. Furthermore, three types of the adaptive regions
(quadrilateral, octagonal and hexadecagonal) were
tested showing that the larger number of polygonal
angles in adaptive 2D regions does not necessarily
lead to significant improvements in image denoising
quality. However, for all three types of regions and all
tested noise levels, the 2D LPA-RICI method outper-
formed other tested methods (fixed size filtering and
the adaptive ICI based method).
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