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A new implementation of the Roe scheme for solving two-layer shallow-water equations is presented in this paper. 

The proposed A-Roe scheme is based on the analytical solution to the characteristic quartic of the flux matrix, 

which is an efficient alternative to a numerical eigensolver. Additionally, an accurate method for maintaining 

the hyperbolic character of the governing system is proposed. The efficiency of the quartic closed-form solver is 

examined and compared to numerical eigensolvers. Furthermore, the accuracy and computational speed of the 

A-Roe scheme is compared to the Roe, Lax-Friedrichs, GFORCE, PVM, and IFCP schemes. Finally, numerical tests 

are presented to evaluate the efficiency of the iterative treatment for the hyperbolicity loss. The proposed A-Roe 

scheme is as accurate as the Roe scheme, but much faster, with computational speeds closer to the GFORCE and 

IFCP scheme. 
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. Introduction 

Shallow-water equations (SWE) are widely used to simulate geophys-

cal flows with dominantly horizontal processes. These equations can be

xtended to a two-layer system that describes the flow of two superim-

osed and immiscible layers of fluid with different densities or even

ifferent phases. For example, a two-layer configuration is found in sea

traits ( Castro et al., 2001, 2004 ), highly stratified estuaries ( Krvavica

t al., 2017a,b ), gravity currents ( Adduce et al., 2011; La Rocca et al.,

012 ), mudflows ( Canestrelli et al., 2012 ), debris flows ( Majd and

anders, 2014; Pelanti et al., 2008 ), submarine avalanches ( Fernández-

ieto et al., 2008; Luca et al., 2009 ), and pyroclastic flows ( Doyle et al.,

011 ). Although such processes can be described more accurately by 3D

avier–Stokes equations, two-layer models make a popular alternative

ecause of their simplicity and a significantly lower computational cost.

Two-layer SWE are defined as a coupled system of conservation laws

ith source terms, or so-called balance laws ( Castro et al., 2001 ). These

quations are challenging to solve numerically because of the layer cou-

ling and non-conservative source terms accounting for the variable

eometry or friction. In recent years, numerical methods for solving

wo-layer equations have received great attention and have been an

bject of intense research ( Bouchut and Zeitlin, 2010; Canestrelli and

oro, 2012; Castro et al., 2004, 2001, 2010; Fernández-Nieto et al.,

011; Kurganov and Petrova, 2009 ). A number of authors have pre-

ented different numerical schemes for non-conservative hyperbolic sys-
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ems based on the finite-difference method ( Fjordholm, 2012; Liu et al.,

015 ), finite-element method ( Ljubenkov, 2015 ) or, more often, finite-

olume method (FVM) ( Bouchut and Zeitlin, 2010; Canestrelli and Toro,

012; Castro et al., 2001; Kurganov and Petrova, 2009 ). 

Among the most popular and robust FVM schemes are Roe schemes,

hich belong to a family of approximate Riemann solvers ( Bermudez

nd Vazquez, 1994; Castro et al., 2001; Parés and Castro, 2004 ).

oe schemes have good well-balanced properties and in compari-

on to incomplete Riemann solvers, such as Lax-Friedrichs, HLL or

ORCE/GFORCE methods, are less diffusive and provide better reso-

ution of discontinuities ( Castro et al., 2010; Kesserwani et al., 2008 ).

owever, Roe schemes require computation of the full eigenstructure of

he flux matrix at each time step ( Castro et al., 2010 ). When analytical

xpressions for the eigenstructure are unavailable, a spectral decompo-

ition of the flux matrix is needed, making Roe schemes computationally

xpensive and, therefore, less attractive for practical applications, such

s simulating complex geophysical flows in sea straits, stratified estuar-

es, submarine avalanches, etc. 

In this research field, there do not exist explicit formulations for

igenvalues of coupled two-layer SWEs which are directly expressed in

erms of the conserved variables ( Castro et al., 2004 ). Because of the

oupling and the corresponding 4 ×4 flux matrix, some authors suggest

hat it is not possible to derive the explicit form of eigenvalues, e.g., “...

imple explicit expressions of the system’s eigenvalues cannot be derived... ”

 Pelanti et al., 2008 ), “... the explicit expression for the eigenvalues cannot

e found. ” ( Kim and LeVeque, 2008 ), “The coupling between the layers...
ober 2018 
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oes not provide explicit access to the system eigenstructure ” ( Abgrall and

arni, 2009 ), whereas others are aware of the existence of the analyti-

al solutions to quartic equations but considered them to be too compli-

ated or less efficient, e.g., “... there is not an easy explicit expression of the

igenvalues... ” ( Fernández-Nieto et al., 2011 ), “... a direct calculation of

ts eigenvalues can be hard... ” ( Fjordholm, 2012 ), “... a closed form of the

igenvalues is non-trivial... ” ( Sarno et al., 2017 ), etc . On the other hand,

ardano-Vieta formula for cubic equations has been used as a more ef-

cient approach in comparison to numerical solvers when computing

igenstructure of Saint Venant-Exner models, defined by a cubic char-

cteristic equation (see Castro et al., 2009; Carraro et al., 2018 ). 

Considering the computational cost of spectral decomposition

nd the prevailing opinion that explicit eigenvalues are ”unavail-

ble ”, Fernández-Nieto et al. (2011) and Castro and Fernández-Nieto

2012) have recently proposed new Riemann solvers based on the poly-

omial approximation of the viscosity matrix, which should represent a

ood compromise between the computational speed and accuracy. 

Taking all these specific concerns into account, the main goal of this

aper is to present a more efficient implementation of the Roe scheme

or a coupled two-layer SWE system, which is based on a compact ana-

ytical solution to the eigenstructure. New analytical formulae are pro-

osed, which may be used instead of numerical tools and algorithms

hen computing eigenvalues and eigenvectors at each time step. Addi-

ionally, a numerical treatment for the hyperbolicity loss is presented

hat always leads to a state that is close to the boundary of the hyper-

olicity region but inside its interior, which avoids the appearance of

oth complex and double eigenvalues. 

This paper is organized as follows: first, the governing system of a

oupled two-layer SWE system is defined; next, a path-conserving nu-

erical scheme is presented with an analytical solution to the eigen-

tructure; several results are also presented, namely, the computational

ost and accuracy analysis of the closed-form quartic solver, as well as

everal performance tests of the proposed scheme; and finally, the re-

ults are discussed and conclusions are drawn. 

. Two-layer shallow-water flow: Theory, Roe scheme and 

nalytical eigenvalue resolution 

.1. Governing system of equations 

Let us consider the following PDE system derived for a one-

imensional (1D) two-layer shallow-water flow in prismatic channels

ith rectangular cross-sections of constant width, written in a general

ector form ( Castro et al., 2001 ): 

𝜕𝐰 

𝜕𝑡 
+ 

𝜕 𝐟 ( 𝐰 ) 
𝜕𝑥 

= 𝐁 ( 𝐰 ) 𝜕𝐰 

𝜕𝑥 
+ 𝐠 ( 𝐰 ) , (1)

here x refers to the axis of the channel and t is time. The vector of

onserved quantities w , the flux vector f(w) and the bathymetry source

erm g(w) are respectively defined as follows ( Castro et al., 2001 ): 

 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
ℎ 1 
𝑞 1 
ℎ 2 
𝑞 2 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
, 𝐟 ( 𝐰 ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝑞 1 
𝑞 2 1 
ℎ 1 

+ 

𝑔 

2 ℎ 
2 
1 

𝑞 2 
𝑞 2 2 
ℎ 2 

+ 

𝑔 

2 ℎ 
2 
2 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
, 𝐠 ( 𝐰 ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

0 
− 𝑔ℎ 1 

d 𝑏 
d 𝑥 

0 
− 𝑔ℎ 2 

d 𝑏 
d 𝑥 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
, (2)

here h j is the layer thickness (or depth), 𝑞 𝑗 = ℎ 𝑗 𝑢 𝑗 is the layer flow

ate per unit width, u j is the layer-averaged horizontal velocity, g is

cceleration of gravity, b is the bed elevation, and index 𝑗 = 1 , 2 denotes

he respective upper and lower layer. Matrix B(w) is a result of coupling

he two-layer system, defined as ( Castro et al., 2001 ): 

 ( 𝐰 ) = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
0 0 0 0 
0 0 − 𝑔ℎ 1 0 
0 0 0 0 

− 𝑔𝑟ℎ 2 0 0 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (3)
188 
here 𝑟 = 𝜌1 ∕ 𝜌2 < 1 is the ratio between the upper layer density 𝜌1 and

he lower layer density 𝜌2 . 

The right-hand side of Eq. (1) contains the terms describing the mo-

entum exchange between two layers, and source terms for channel

athymetry. The system can be rewritten in the following quasi-linear

orm ( Castro et al., 2001 ): 

𝜕𝐰 

𝜕𝑡 
+  ( 𝐰 ) 𝜕𝐰 

𝜕𝑥 
= 𝐠 ( 𝐰 ) , (4)

here 

 (𝐰 ) = 

𝜕 𝐟 ( 𝐰 ) 
𝜕𝐰 

− 𝐁 ( 𝐰 ) = 𝐉 ( 𝐰 ) − 𝐁 ( 𝐰 ) (5)

s the pseudo-Jacobian matrix that contains the flux gradient terms as

ell as the coupling terms: 

 (𝐰 ) = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
0 1 0 0 

𝑐 2 1 − 𝑢 2 1 2 𝑢 1 𝑐 2 1 0 
0 0 0 1 
𝑟𝑐 2 2 0 𝑐 2 2 − 𝑢 2 2 2 𝑢 2 . 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(6)

here 𝑐 2 
𝑗 
= 𝑔ℎ 𝑗 , is propagation celerity of internal and external pertur-

ations (waves), for 𝑗 = 1 , 2 . 
The characteristic polynomial of  (𝐰) is defined as 𝑝 ( 𝜆) =

et (  − 𝜆𝐈𝐝 ) , where 𝜆 is the eigenvalue of  (𝐰) and Id is a 4 ×4 identity

atrix. The coefficients of the 4th order characteristic polynomial 

 ( 𝜆) = 𝜆4 + 𝑎𝜆3 + 𝑏𝜆2 + 𝑐𝜆 + 𝑑 (7)

re derived from Eq. (6) : 

 = −2 
(
𝑢 1 + 𝑢 2 

)
, (8)

 = 𝑢 2 1 − 𝑐 2 1 + 4 𝑢 1 𝑢 2 + 𝑢 2 2 − 𝑐 2 2 , (9)

 = −2 𝑢 2 
(
𝑢 2 1 − 𝑐 2 1 

)
− 2 𝑢 1 

(
𝑢 2 2 − 𝑐 2 2 

)
, (10)

 = 

(
𝑢 2 1 − 𝑐 2 1 

)(
𝑢 2 2 − 𝑐 2 2 

)
− 𝑟𝑐 2 1 𝑐 

2 
2 . (11)

ubstituting coefficients a, b, c , and d , Eq. (7) can be written in the form

 ( 𝜆) = 

(
𝜆2 − 2 𝑢 1 𝜆 + 𝑢 2 1 − 𝑐 2 1 

)(
𝜆2 − 2 𝑢 2 𝜆 + 𝑢 2 2 − 𝑐 2 2 

)
− 𝑟𝑐 2 1 𝑐 

2 
2 , (12)

here four roots 𝜆k , 𝑘 = 1 , ., 4 , of p ( 𝜆) are the eigenvalues of matrix  (𝐰) .
The eigenvalues define the propagation speeds of barotropic (exter-

al) and baroclinic (internal) perturbations. External eigenvalues 𝜆± 
𝑒𝑥𝑡 

re always real ( Castro et al., 2001 ); however, at sufficiently large rela-

ive velocities Δ𝑢 = |𝑢 1 − 𝑢 2 |, the internal eigenvalues 𝜆± 
𝑖𝑛𝑡 

may become

omplex and the governing system may lose its hyperbolic character

 Castro et al., 2011 ). 

Since explicit eigenvalues of a two-layer system are considered too

omplicated and unavailable ( Abgrall and Karni, 2009; Fernández-Nieto

t al., 2011; Fjordholm, 2012; Kim and LeVeque, 2008; Pelanti et al.,

008; Sarno et al., 2017 ), the following approximations derived under

he assumption of r ≈1 and u 1 ≈ u 2 are usually used for internal and

xternal eigenvalues ( Schijf and Schönfled, 1953 ): 

± 
𝑒𝑥𝑡 

= 𝑈 1 ± 

√
𝑔( ℎ 1 + ℎ 2 ) (13)

± 
𝑖𝑛𝑡 

= 𝑈 2 ± 

√ 

𝑔(1 − 𝑟 ) 
ℎ 1 ℎ 2 
ℎ 1 + ℎ 2 

[ 
1 − 

( 𝑢 1 − 𝑢 2 ) 2 

𝑔(1 − 𝑟 )( ℎ 1 + ℎ 2 ) 

] 
, (14)

ith 

 1 = 

ℎ 1 𝑢 1 + ℎ 2 𝑢 2 
ℎ 1 + ℎ 2 

and 𝑈 2 = 

ℎ 1 𝑢 2 + ℎ 2 𝑢 1 
ℎ 1 + ℎ 2 

. (15)

From Eq. (14) it follows that internal eigenvalues become complex

or 

( 𝑢 1 − 𝑢 2 ) 2 

𝑔(1 − 𝑟 )( ℎ + ℎ ) 
> 1 . (16)
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ote that Eq. (16) is valid only when dealing with two layers of similar

ensities ( 𝑟 = 𝜌1 ∕ 𝜌2 ≈ 1 ) and when velocities in both layers are com-

arable ( u 1 ≈ u 2 ). These conditions are found in some stratified flows

n nature, such as exchange flows through sea straits ( Castro et al.,

004; Chakir et al., 2009 ) or some cases of highly stratified estuaries

 Krvavica et al., 2017b ). For a general application, however, this condi-

ion may not be necessary to ensure hyperbolicity, as demonstrated by

arno et al. (2017) . 

.2. Numerical scheme 

A family of Roe schemes is considered here, which represent a partic-

lar case of path-conservative numerical schemes based on the finite vol-

me method. Path-conservative schemes are used to approximate gen-

ral conservation systems with non-conservative terms ( Parés, 2006 ).

 first order accurate path-conservative scheme for Eq. (4) without the

athimetry source term is written as follows ( Parés, 2006 ): 

 

𝑛 +1 
𝑖 

= 𝐰 

𝑛 
𝑖 
− 

Δ𝑡 
Δ𝑥 

(
𝐃 

+ 
𝑖 −1∕2 + 𝐃 

− 
𝑖 +1∕2 

)
(17)

here Δx and Δt are the respective spatial and time increment (con-

idered constant here for simplicity), 𝐰 

𝑛 
𝑖 

denotes the approximate cell-

veraged values of the exact solution obtained by the numerical scheme

t cell 𝐼 𝑖 = [ 𝑥 𝑖 −1∕2 , 𝑥 𝑖 +1∕2 ] in time 𝑡 𝑛 = 𝑛 Δ𝑡, and matrices 𝐃 

± 
𝑖 +1∕2 are inter-

ediate functions defined at the cell interface 𝑥 𝑖 +1∕2 : 

 

± 
𝑖 +1∕2 =  

± 
𝑖 +1∕2 ( 𝐰 

𝑛 
𝑖 
, 𝐰 

𝑛 
𝑖 +1 ) ⋅ ( 𝐰 

𝑛 
𝑖 +1 − 𝐰 

𝑛 
𝑖 
) (18)

ith  

± 
𝑖 +1∕2 defined by a decomposition of the Roe linearisation of the

orm ( Parés, 2006 ): 

 

± 
𝑖 +1∕2 = 

1 
2 
(
 𝑖 +1∕2 ± 𝑸 𝑖 +1∕2 

)
(19) 

here 

 𝑖 +1∕2 =  

+ 
𝑖 +1∕2 +  

− 
𝑖 +1∕2 (20)

nd 𝑸 𝑖 +1∕2 represents a numerical viscosity matrix, whose choice de-

ends on a particular numerical scheme. 

For a two-layer system defined by Eq. (1) , Roe linearisation is per-

ormed at the cell interfaces 𝑥 𝑖 +1∕2 between cells I i and 𝐼 𝑖 +1 as follows

 Castro et al., 2001 ): 

 𝑖 +1∕2 = 

{
ℎ 1 ,𝑖 +1∕2 𝑞 1 ,𝑖 +1∕2 ℎ 2 ,𝑖 +1∕2 𝑞 2 ,𝑖 +1∕2 

}T 
, (21)

here 

 𝑗,𝑖 +1∕2 = 

ℎ 𝑗,𝑖 + ℎ 𝑗,𝑖 +1 

2 
, 𝑗 = 1 . 2 , (22)

 𝑗,𝑖 +1∕2 = 

𝑢 𝑗,𝑖 
√
ℎ 𝑗,𝑖 + 𝑢 𝑗,𝑖 +1 

√
ℎ 𝑗,𝑖 +1 √

ℎ 𝑗,𝑖 + 

√
ℎ 𝑗,𝑖 +1 

, 𝑗 = 1 . 2 , (23)

 𝑗,𝑖 +1∕2 = ℎ 𝑗,𝑖 +1∕2 𝑢 𝑗,𝑖 +1∕2 , 𝑗 = 1 , 2 (24)

nd also 

 𝑖 +1∕2 = 𝐉 𝑖 +1∕2 − 𝐁 𝑖 +1∕2 , (25)

here matrices 𝐉 𝑖 +1∕2 and 𝐁 𝑖 +1∕2 correspond to 𝐉 ( 𝐰 𝑖 +1∕2 ) and 𝐁 ( 𝐰 𝑖 +1∕2 ) ,
espectively. The viscosity matrix in Roe methods corresponds to

astro et al. (2001) : 

 𝑖 +1∕2 = | 𝑖 +1∕2 | (26) 

ith 

 𝑖 +1∕2 | = 𝐊 𝑖 +1∕2 |𝚲𝑖 +1∕2 |𝐊 

−1 
𝑖 +1∕2 . (27)

here |𝚲𝑖 +1∕2 | is a N ×N diagonal matrix whose coefficient are the ab-

olute eigenvalues |𝜆𝑘 |, 𝑘 = 1 , ., 𝑁, 𝐊 𝑖 +1∕2 is the same-size matrix whose

olumns are right eigenvectors corresponding to those eigenvalues and

 

−1 
𝑖 +1∕2 is the inverse of 𝐊 𝑖 +1∕2 . To achieve good well-balanced properties,
189 
he source terms are upwinded using projection matrices ( Castro et al.,

001 ): 

 

± 
𝑖 +1∕2 = 

1 
2 
𝐊 𝑖 +1∕2 

(
𝐈𝐝 ± sign ( 𝚲𝑖 +1∕2 ) 

)
𝐊 

−1 
𝑖 +1∕2 . (28)

here sign ( 𝚲𝑖 +1∕2 ) is a N ×N diagonal matrix whose coefficient are

ign ( 𝜆𝑘 ) , 𝑘 = 1 , ., 𝑁 . 

To finally solve a coupled two-layer system, the Roe scheme is writ-

en in the following form ( Castro et al., 2001 ): 

 

𝑛 +1 
𝑖 

= 𝐰 

𝑛 
𝑖 
− 

Δ𝑡 
Δ𝑥 
(
𝐟 𝑖 −1∕2 − 𝐟 𝑖 +1∕2 

)
+ 

Δ𝑡 
2Δ𝑥 

[
𝐁 𝑖 −1∕2 

(
𝐰 

𝑛 
𝑖 
− 𝐰 

𝑛 
𝑖 −1 
)
+ 𝐁 𝑖 +1∕2 

(
𝐰 

𝑛 
𝑖 +1 − 𝐰 

𝑛 
𝑖 

)]
+ 

Δ𝑡 
Δ𝑥 

(
𝐏 + 
𝑖 −1∕2 𝐠 𝑖 −1∕2 + 𝐏 − 

𝑖 +1∕2 𝐠 𝑖 +1∕2 
)
, (29) 

ith the numerical flux 

 𝑖 +1∕2 = 

1 
2 
(
𝐟 𝑛 
𝑖 
+ 𝐟 𝑛 

𝑖 +1 
)
− 

1 
2 
||| 𝑖 +1∕2 

|||(𝐰 

𝑛 
𝑖 +1 − 𝐰 

𝑛 
𝑖 

)
. (30)

To prevent the numerical viscosity of the Roe scheme from vanishing

hen any of the eigenvalues of the matrix | 𝑖 +1∕2 | are zero, the Harten

egularization (entropy fix) is applied ( Castro et al., 2001 ). Numerical

ifficulties may also appear in Roe scheme when one of the layers vanish

nd when wet-dry fronts develop at the interface. The former issue is re-

olved by setting a wet-dry parameter ( 𝜀 ), so that when the depth of one

f the layers in a cell is lower than 𝜀 , the cell is considered as a one-layer

ystem and a corresponding two-equation PDE system ( Bermudez and

azquez, 1994 ) is solved instead of Eq. (1) . The well-balanced property

f the numerical scheme in the presence of wet-dry fronts is achieved

y a source term modification for the two-layer system introduced by

astro et al. (2005) . 

Note that Eq. (19) can also be applied to other numerical schemes

rom the family of path-conserving schemes, such as Lax-Friedrichs (LF)

 Toro, 2013 ), where 

 𝑖 +1∕2 = 

Δ𝑥 
Δ𝑡 

𝐈𝐝 , (31) 

r FORCE and GFORCE schemes ( Toro, 2013 ), where 

 𝑖 +1∕2 = (1 − 𝜔 ) Δ𝑥 
Δ𝑡 

𝐈𝐝 + 𝜔 
Δ𝑡 
Δ𝑥 

 

2 
𝑖 +1∕2 , (32)

ith 𝜔 = 0 . 5 and 𝜔 = 1∕(1 + 𝐶𝐹 𝐿 ) , respectively. The CFL number is de-

ned as ( Castro et al., 2010 ): 

𝐹 𝐿 = 

Δ𝑡 
Δ𝑥 

max ( 𝜆𝑘 ) , 𝑘 = 1 , ., 𝑁. (33)

here CFL stands for Courant–Friedrichs–Lewy number. 

As stated earlier, in comparison to incomplete Riemman solvers,

oe schemes are less diffusive and have good well-balanced proper-

ies ( Castro et al., 2010 ). However, Roe schemes require the numerical

omputation of the whole eigenstructure of matrix  𝑖 +1∕2 , which can be

omputationally very expensive. A possible alternative to the spectral

ecomposition required in the Roe scheme is the redefinition of the vis-

osity matrix 𝑸 𝑖 +1∕2 by the Polynomial Viscosity Matrix (PVM), which

an be written as ( Castro and Fernández-Nieto, 2012 ): 

 𝑖 +1∕2 = | 𝑖 +1∕2 | = 

3 ∑
𝑘 =0 
𝛼𝑘  

𝑘 
𝑖 +1∕2 (34)

here 𝛼k are the solutions of the following linear system: 

 

 

 

 

 

 

1 𝜆1 𝜆2 1 𝜆3 1 
1 𝜆2 𝜆2 2 𝜆3 2 
1 𝜆3 𝜆2 3 𝜆3 3 
1 𝜆4 𝜆2 4 𝜆3 3 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝛼0 
𝛼1 
𝛼2 
𝛼3 

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
= 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
|𝜆1 ||𝜆2 ||𝜆3 ||𝜆4 |

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
(35) 

he eigenvalues are computed by approximate expressions given by

qs. (13) and (14) . This scheme will be denoted here as the PVM-Roe

cheme. 
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Since the CPU time needed to compute Eq. (35) is similar to the

ne required to obtain Eq. (27) , a simpler and faster Intermediate Field

apturing Parabola (IFCP) scheme was derived from the family of PVM

chemes, given by Fernández-Nieto et al. (2011) : 

 𝑖 +1∕2 = 𝛼0 𝐈𝐝 + 𝛼1  𝑖 +1∕2 + 𝛼2  

2 
𝑖 +1∕2 , (36)

here 𝛼k are defined as: 

 

 

 

 

1 𝜆1 𝜆2 1 
1 𝜆2 𝜆2 2 
1 𝜒𝑖𝑛𝑡 𝜒2 

𝑖𝑛𝑡 

⎤ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝛼0 
𝛼1 
𝛼2 

⎫ ⎪ ⎬ ⎪ ⎭ = 

⎧ ⎪ ⎨ ⎪ ⎩ 
|𝜆1 ||𝜆2 ||𝜒𝑖𝑛𝑡 |

⎫ ⎪ ⎬ ⎪ ⎭ , (37)

ith 

𝑖𝑛𝑡 =  𝑒𝑥𝑡 max 
(|𝜆3 |, |𝜆4 |), (38)

nd 

 𝑒𝑥𝑡 = 

{ 

sign ( 𝜆3 + 𝜆4 ) , if ( 𝜆3 + 𝜆4 ) ≠ 0 
1 , otherwise . (39)

s in the original PVM scheme, the approximate expressions given by

qs. (13) and (14) are used to compute the eigenvalues. However, in this

ase, the coefficients 𝛼k can be explicitly defined (see Fernández-Nieto

t al., 2011 ). 

.3. Definition of the A-Roe numerical scheme 

We propose a new implementation of the Roe scheme named A-

oe. The A-Roe scheme is defined by Eqs. (29) and (30) , where the

iscosity matrix is given by Eq. (27) , but instead of using a numerical

olver (denoted here as N-Roe) or approximating the viscosity matrix,

he eigenstructure is solved analytically – eigenvalues are computed by

 closed-form solution to the roots of the characteristic quartic poly-

omial given by Eq. (12) , and then the corresponding eigenvectors are

asily obtained. The proposed scheme shares the same properties as the

-scheme of Roe regarding the well-balanced properties and the capa-

ility to deal with wet-dry fronts (the same numerical techniques and

odifications designed for Roe methods are directly applicable to the

-Roe method proposed here). 

.3.1. Eigenvalues and a closed-form quartic solver 

An analytical solution for quartic equations has been derived by Fer-

ari in the 16th century ( Abramowitz and Stegun, 1965 ). This closed-

orm solution is obtained by the method of radicals and it depends on

he solution of a residual cubic equation, which can be solved by the

ardano’s method ( Abramowitz and Stegun, 1965 ). Although this clas-

ical method is the fastest ( Strobach, 2015 ), it is considered problematic

ue to cancellation errors for certain combinations of polynomial coef-

cients ( Flocke, 2015; Strobach, 2010, 2015 ). 

No theoretical analysis of the cancellation error for the closed-form

uartic solver has been made so far, but several studies found that the

nalytical solution produces inferior results for small roots in case of a

arge root spread, i.e. , when one of the roots is several orders of magni-

ude larger than the others ( Flocke, 2015; Strobach, 2010, 2015 ). For ex-

mple, Strobach (2010) demonstrated that a closed-form quartic solver

roduced an average error between 10 −14 and 10 −15 for root spreads in

ange 1–1000, but for some individual cases with extreme root spreads

n the range of 10 18 , the quartic solver produced completely corrupted

esults. For this reason, Ferrari’s analytical solution is considered unre-

iable and is usually avoided in computational use. 

Although the closed-form quartic solver is unsuitable for general

se, its accuracy should be re-evaluated in the context of this study to

ssess if it could still be considered reliable for computing the eigen-

tructure of the pseudo-Jacobian matrix of the governing SWE system

iven by Eq. (6) . First of all, high accuracy (error < 10 −14 ) of the quartic

olver is not imperative because: ( i ) there are many viable alternatives

o complete Riemann solvers that only approximate the viscosity matrix

 Castro and Fernández-Nieto, 2012 ), and ( ii ) the traditional approach in
190 
eveloping these models is based on a matrix eigensolver, such as the

APACK subroutine dgeev.f ( Anderson et al., 1999 ), which also shows a

imilar average error as the closed-form quartic solver (although, it is

ore reliable for extreme root spreads) ( Strobach, 2010 ). More impor-

antly, the eigenvalues of the pseudo-Jacobian matrix have a physical

eaning - they represent the propagation speeds of the internal and ex-

ernal gravity waves. Considering that the propagation speeds of these

aves depend mainly on the flow velocity and water depth ( Schijf and

chönfled, 1953 ), extreme eigenvalue spreads should not be expected

ince they are not physically possible in real geophysical flows. 

Ferrari’s method for solving quartic equations ( Abramowitz and Ste-

un, 1965 ) is given by a series of simple algebraic equations involving

ne root of a cubic equation (see Appendix A.1 ). Although it is possible

o combine these equations into a single explicit expression, it is too ex-

ensive to be presented in a journal format, and certainly not optimized

o be implemented in a computational algorithm. To our knowledge,

uch formulation is available only on Wikipedia (2018) . Therefore, in

his study, we present a simple closed-form approach for finding real

oots of the quartic Eq. (7) consisting of eight simple algebraic evalua-

ions. A detailed derivation of these equations is given in A.1 . 

Given the coefficients a, b, c and d of the characteristic 4th order

olynomial, defined by Eqs. (8) –(11) , the real eigenvalues are computed

y the following expressions: 

1 , 2 = 𝜆± 
𝑒𝑥𝑡 

= 

− 

𝑎 

2 ± 

√
𝑍 − 

√ 

− 𝐴 − 𝑍 ∓ 

𝐵 √
𝑍 

2 
, (40)

3 , 4 = 𝜆± 
𝑖𝑛𝑡 

= 

− 

𝑎 

2 ± 

√
𝑍 + 

√ 

− 𝐴 − 𝑍 ∓ 

𝐵 √
𝑍 

2 
. (41)

here 

 = 

1 
3 

( 

2 
√
Δ0 cos 

𝜙

3 
− 𝐴 

) 

, (42)

= arccos 
⎛ ⎜ ⎜ ⎜ ⎝ 

Δ1 

2 
√ 

Δ3 
0 

⎞ ⎟ ⎟ ⎟ ⎠ , (43)

ith 

 = 2 𝑏 − 

3 𝑎 2 
4 
, (44)

 = 2 𝑐 − 𝑎𝑏 + 

𝑎 3 

4 
. (45)

nd 

0 = 𝑏 2 + 12 𝑑 − 3 𝑎𝑐, (46)

1 = 27 𝑎 2 𝑑 − 9 𝑎𝑏𝑐 + 2 𝑏 3 − 72 𝑏𝑑 + 27 𝑐 2 . (47)

.3.2. Eigenvectors 

The 4 ×4 matrix K whose columns are right eigenvectors k k corre-

ponding to eigenvalues 𝜆𝑘 , 𝑘 = 1 , ., 4 are found by solving the following

quation: 

  − 𝜆𝐈𝐝 ) 𝐊 = 0 (48)

ince  − 𝜆𝐈𝐝 is singular there are infinite solutions to Eq. (48) , i.e. , for

n assumed value for one component of the eigenvector, the remaining

omponents are easily computed. For example, if we assume 𝐤 𝑘, [1] = 1 ,
he remaining eigenvector components are obtained from Eq. (48) as: 

 𝑘 = 

{
1 𝜆𝑘 𝜇𝑘 𝜆𝑘 𝜇𝑘 

}𝑇 
, (49)

here 

𝑘 = 1 − 

(
𝜆𝑘 − 𝑢 1 

)2 
𝑐 2 1 

(50)



N. Krvavica et al. Advances in Water Resources 122 (2018) 187–205 

a

𝐊  

 

r  

N

2

c

|  

w

|
 

v

𝐊  

F  

t

𝐊  

w  

i  

1

2

 

a  

i  

o  

d  

c  

r  

s  

p

 

p  

r  

p  

c  

T  

s  

p  

h  

i  

2  

i  

l  

t  

v

 

  

o  

a  

m  

S  

g  

a

  

w  

o  

a

 

h  

t  

i  

A

Δ  

I  

c

g

 

Δ  

h  

s  

s  

p  

t  

r  

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nd 

 = 

[
𝐤 1 𝐤 2 𝐤 3 𝐤 4 

]
. (51)

Note that the associated eigenvectors can alternatively be de-

ived as proposed by Rosatti et al. (2008) or Murillo and García-

avarro (2010) for a cubic characteristic polynomial. 

.3.3. The numerical viscosity matrix 

Once the eigenstructure has been computed, the viscosity matrix | |
an be obtained from Eq. (27) as: 

 | = 𝐊 |𝚲|𝐊 

−1 (52)

here 

𝚲| = 

⎡ ⎢ ⎢ ⎣ 
|𝜆1 | 0 

⋱ 

0 |𝜆4 |
⎤ ⎥ ⎥ ⎦ (53) 

To avoid computationally expensive numerical calculation of the in-

erse matrix, 𝐊 

−1 can be obtained from: 

 

−1 = 

1 
det ( 𝐊 ) 

adj ( 𝐊 ) . (54)

ull explicit expressions for 𝐊 

−1 are given in A.2 . However, we found

hat it is computationally less demanding to rewrite Eq. (52) as 

 

𝑇 | |𝑇 = ( 𝐊 |𝚲|) 𝑇 , (55)

hich corresponds to a general matrix equation 𝐀𝐱 = 𝐁 , solve it numer-

cally for x (for example, by a LAPACK routine gesv ( Anderson et al.,

999 )), and then transpose it. 

.4. Numerical treatment for the loss of hyperbolicity 

Since the proposed A-Roe scheme is valid only for real eigenvalues,

n appropriate numerical treatment is required in the case of hyperbol-

city loss when complex eigenvalues appear. In the past, the problem

f the hyperbolicity loss has been bypassed by applying a real Jordan

ecomposition of the pseudo-Jacobian matrix; however, such numeri-

al workaround may still cause un-physical oscillations or unrealistic

esults ( Castro et al., 2011 ). Introducing the third intermediate layer

eemed promising and physically justified, however, it proved to be only

artially successful ( Castro et al., 2012 ). 

Recently, several more physically realistic treatments have been pro-

osed. Castro et al. (2011) have introduced a simple numerical algo-

ithm, which adds an extra amount of friction at every cell where com-

lex values are detected. The amount of friction is computed at each

ell to satisfy the approximate hyperbolic condition given by Eq. (16) .

his approach is physically justified because the friction term may be

een as an approximation of an additional momentum flux which ap-

ears locally due to turbulent mixing processes. In real flows, loss of

yperbolicity corresponds to strong shear stress and the development of

nterfacial instabilities, such as Kelvin–Helmholtz waves ( Castro et al.,

011; Sarno et al., 2017 ). Once the instabilities appear, turbulent mix-

ng initiates vertical mass and momentum transfer, and an intermediate

ayer of a finite thickness develops. Krvavica et al. (2018) also showed

hat adding physically realistic friction and entrainment terms may pre-

ent the loss of hyperbolicity in some situations. 

Sarno et al. (2017) improved this idea by computing the discriminant

 of the characteristic polynomial given by Eq. (12) . When  > 0 , roots

f the characteristic polynomial, i.e. , eigenvalues, are either all real or

ll complex. Since two (external) eigenvalues are always real, the re-

aining two (internal) eigenvalues can only be real if  > 0 . However,

arno et al. (2017) computed  from a formula for a discriminant of a

eneral polynomial p ( x ) of a degree n , as a function of its coefficients

 n , given by: 

 ( 𝑝 ) = (−1) 𝑛 ( 𝑛 −1)∕2 1 
𝑎 

det ( 𝐑 ( 𝑝, 𝑝 ′)) (56)

𝑛 

191 
here p ′ is derivative of polynomial p , and R ( p, p ′ ) is the Sylvester matrix

f p and p ′ ( Sarno et al., 2017 ). For a quartic equation, this formula yields

 rather long expression (for details see ( Sarno et al., 2017 )). 

In this work, a similar approach to Sarno et al. (2017) is proposed;

owever, the choice of the discriminant and the implementation of

he hyperbolicity correction differs. First, the hyperbolicity condition

s based on the discriminant of the resolvent cubic equation  𝑐𝑢𝑏𝑖𝑐 (see

ppendix A.1 ) given by 

= 

27 
64 

 𝑐𝑢𝑏𝑖𝑐 = 4Δ3 
0 − Δ2 

1 > 0 (57)

t is easy to verify that Δ = 

27 
64  𝑐𝑢𝑏𝑖𝑐 = 27  𝑞𝑢𝑎𝑟𝑡𝑖𝑐 ; however, Δ is more

ompact and therefore less computationally demanding than  𝑞𝑢𝑎𝑟𝑡𝑖𝑐 

iven by Eq. (56) . 

Furthermore, to take advantage of the fact that A-Roe method solves

0 and Δ1 when computing the linearized values at every intercell, the

yperbolicity verification and correction is performed directly at this

tage. The optimal correction is then only added as an extra friction

ource term when computing the values at the next time step. This im-

lementation requires almost no extra computational time for verifying

he hyperbolicity. Additional computation is required only when cor-

ecting the momentum term if hyperbolicity loss is detected at a specific

ntercell at some time step. 

The proposed implementation is described as follows: 

1. Once the solutions 𝐰 

𝑛 
𝑖 

are known at each cell I i at time t n , the first part

of the Roe linearisation is computed by Eqs. (21) –(25) to get con-

served values 𝐰 𝑖 +1∕2 at cell interfaces 𝐼 𝑖 +1∕2 and compute linearized

pseudo-Jacobian matrix  𝑖 +1∕2 
2. Coefficients of the characteristic polynomial are then computed for

conserved values 𝐰 𝑖 +1∕2 at cell interfaces by Eqs. (8) –(11) 

3. At every cell interface, the first step of the explicit quartic solver is

computed by Eqs. (46) and (47) to get Δ0 and Δ1 

4. The discriminant of the resolvent cubic equation Δ is computed us-

ing Eq. (57) and the hyperbolicity condition is verified at each cell

interface: 
• If Δ> 0, the quartic solver continues computing Eqs. (40) and

(41) to obtained the eigenvalues. The eigenvector matrix is con-

structed using Eq. (51) , and finally the viscosity matrix is com-

puted by Eq. (52) (fully analytical) or Eq. (55) (semi-analytical,

but faster) 
• If Δ≤ 0, the linearized velocities at those interfaces (computed

at step 1) are corrected by an optimal friction term: 

( 𝑢 𝑛 1 ,𝑖 +1∕2 ) 
𝑐𝑜𝑟𝑟 = 𝑢 𝑛 1 ,𝑖 +1∕2 + Δ𝑡𝐹 𝑐𝑜𝑟𝑟 

sign 
(
𝑢 𝑛 2 ,𝑖 +1∕2 − 𝑢 𝑛 1 ,𝑖 +1∕2 

)
ℎ 𝑛 1 ,𝑖 +1∕2 

( 𝑢 𝑛 2 ,𝑖 +1∕2 ) 
𝑐𝑜𝑟𝑟 = 𝑢 𝑛 2 ,𝑖 +1∕2 − Δ𝑡𝑟𝐹 𝑐𝑜𝑟𝑟 

sign 
(
𝑢 𝑛 2 ,𝑖 +1∕2 − 𝑢 𝑛 1 ,𝑖 +1∕2 

)
ℎ 𝑛 2 ,𝑖 +1∕2 

(58) 

where F corr is a minimum value that satisfies the condition given

by Eq. (57) . Sarno et al. (2017) examined several iterative meth-

ods and found that the fastest algorithm for this kind of prob-

lems is the Illinois method ( Dowell and Jarratt, 1971 ), which is

implemented here as follows. First, an interval is chosen so that

F corr ∈ [ a 0 , b 0 ], where 𝑎 0 = 0 (no correction) and 

𝑏 0 = 

|𝑢 2 ,𝑖 +1∕2 − 𝑢 1 ,𝑖 +1∕2 |
Δ𝑡 
( 

1 
ℎ 1 ,𝑖 +1∕2 

+ 

𝑟 

ℎ 2 ,𝑖 +1∕2 

) 

(59) 

which yields a hyperbolic state with 𝑢 1 ,𝑖 +1∕2 − 𝑢 2 ,𝑖 +1∕2 = 0 . The

next guess for F corr, p in the p -th iteration is calculated through 

𝐹 𝑐𝑜𝑟𝑟,𝑝 = 𝑏 𝑝 − 

𝑓 ( 𝑏 𝑝 )( 𝑏 𝑝 − 𝑎 𝑝 ) 
𝑓 ( 𝑏 𝑝 ) − 𝑓 ( 𝑎 𝑝 ) 

, (60)

where 𝑓 ( 𝑏 𝑝 ) = Δ( 𝑏 𝑝 ) and 𝑓 ( 𝑎 𝑝 ) = Δ( 𝑎 𝑝 ) are the discriminants cor-

responding to velocities ( 𝑢 1 ,𝑖 +1∕2 ) 𝑐𝑜𝑟𝑟 and ( 𝑢 2 ,𝑖 +1∕2 ) 𝑐𝑜𝑟𝑟 , respec-

tively, corrected by F corr, p through Eq. (58) . At the next iteration
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Fig. 1. Probability distributions of four real roots representing the eigenvalues 

of the two-layer SWE system. 
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step, the interval pairs are chosen as follows: (
𝐹 𝑐𝑜𝑟𝑟,𝑝 , Δ( 𝐹 𝑐𝑜𝑟𝑟,𝑝 ) 

)
, 
(
𝑏 𝑝 , Δ( 𝑏 𝑝 ) 

)
if Δ( 𝑏 𝑝 )Δ( 𝐹 𝑐𝑜𝑟𝑟,𝑝 ) < 0 (

𝑎 𝑝 , Δ( 𝑎 𝑝 )∕2 
)
, 
(
𝐹 𝑐𝑜𝑟𝑟,𝑝 , Δ( 𝐹 𝑐𝑜𝑟𝑟,𝑝 ) 

)
else . 

(61)

The algorithm iterates until the condition |𝑎 𝑝 − 𝑏 𝑝 | ≤ 𝜖 is satisfied

(where 𝜖 is a convergence threshold), and the final solution is

given by: 

𝐹 𝑐𝑜𝑟𝑟,𝑝 = max 
(
𝑎 𝑝 , 𝑏 𝑝 

)
. (62)

Since it always holds that Δ( a p ) Δ( b p ) < 0, Eq. (62) and appropri-

ate 𝜖 guarantee that the discriminant is always positive and larger

than zero Δ( F corr, p ) > 0, which prevents possible problems with

singular eigenvector matrix due to double roots when Δ = 0 . 
After the correction is performed, the analytic solver continues

to compute the eigenstructure for the viscosity matrix through

Eqs. (40) , (41), (51) , and (52) or (55) . 

5. Finally, the conserved values are computed for the next time step

using, for example, the Q-scheme of Roe, where the friction source

term F corr is added as an extra source term describing the vertical

momentum transfer between the layers: 

𝐰 

𝑛 +1 
𝑖 

= 𝐰 

𝑛 
𝑖 
− 

Δ𝑡 
Δ𝑥 
(
𝐟 𝑖 −1∕2 − 𝐟 𝑖 +1∕2 

)
+ 

Δ𝑡 
2Δ𝑥 

[
𝐁 𝑖 −1∕2 

(
𝐰 

𝑛 
𝑖 
− 𝐰 

𝑛 
𝑖 −1 
)
+ 𝐁 𝑖 +1∕2 

(
𝐰 

𝑛 
𝑖 +1 − 𝐰 

𝑛 
𝑖 

)]
+ 

Δ𝑡 
Δ𝑥 

(
𝐏 + 
𝑖 −1∕2 𝐠 𝑖 −1∕2 + 𝐏 − 

𝑖 +1∕2 𝐠 𝑖 +1∕2 
)

+ Δ𝑡 
(
𝐏 + 
𝑖 −1∕2 𝐬 𝑓 ,𝑖 −1∕2 + 𝐏 − 

𝑖 +1∕2 𝐬 𝑓 ,𝑖 +1∕2 
)

(63)

where 𝐬 𝑓 ,𝑖 +1∕2 is the friction source term, defined as: 

𝐬 𝑓 ,𝑖 +1∕2 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

0 
𝐹 𝑐𝑜𝑟𝑟 sign 

(
𝑢 𝑛 2 ,𝑖 +1∕2 − 𝑢 𝑛 1 ,𝑖 +1∕2 

)
0 

− 𝑟𝐹 𝑐𝑜𝑟𝑟 sign 
(
𝑢 𝑛 2 ,𝑖 +1∕2 − 𝑢 𝑛 1 ,𝑖 +1∕2 

)
⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ 
. (64)

The friction source term is introduced to account for the momentum

exchange occurring as a result of the hyperbolicity loss (turbulent

mixing in real flows). Practically, it decreases the velocity difference

between the layers at the cell adjacent to the interface where hy-

perbolicity loss was detected, and hence prevents a transfer of the

hyperbolicity loss conditions to the next time step. 

. Results 

To evaluate the performance of the proposed A-Roe scheme several

umerical tests are presented. First, the accuracy and computational

peed of the closed-form quartic solver are analysed. Next, several nu-

erical results are given to analyse the performance of the implemented

lgorithm in computing a two-layer flow, with a special focus on the

omputational speed and accuracy of the hyperbolicity correction algo-

ithm. 

All numerical algorithms have been implemented in Python 3.6, us-

ng the Numpy package. The tests have been performed on 64-bit Win-

ows 10 machine with Intel Core i7-3770 3.4 GHz processor. 

.1. Computational accuracy and speed of the closed-form quartic solver 

This subsection examines the performance and reliability of the ana-

ytical approach to eigenstructure of the governing system. The accuracy

nd computational speed of the proposed closed-form quartic solver are

nalysed for one million root combinations. 

Since the main idea is to apply this quartic solver to the pseudo-

acobian matrix of the two-layer SWE system, physically realistic roots

re examined. Therefore, a large set of flow parameters, namely layer

epths 0 < h 1, 2 < 100 m and velocities −20 < 𝑢 1 , 2 < 20 m s −1 , as well as

ensity ratios 0.1 < r < 1, have been randomly generated from a uniform
192 
istribution. Based on these parameters, approximate roots have been

alculated by Eqs. (13) and (14) . Only the solutions with all real roots

re then selected and statistically analysed to obtain a corresponding

robability distribution for each eigenvalue ( Fig. 1 ). 

Next, one million set of test roots 𝜆1, 2, 3, 4 are randomly gener-

ted as statistically independent samples of each probability distribu-

ion presented in Fig. 1 . The coefficients of the characteristic quar-

ic Eq. (7) are then computed according to the following expressions

 Strobach, 2010 ): 

 = −( 𝜆1 + 𝜆2 + 𝜆3 + 𝜆4 ) (65) 

 = 𝜆1 𝜆2 + ( 𝜆1 + 𝜆2 )( 𝜆3 + 𝜆4 ) + 𝜆3 𝜆4 (66) 

 = − 𝜆1 𝜆2 ( 𝜆3 + 𝜆4 ) − 𝜆3 𝜆4 ( 𝜆1 + 𝜆2 ) (67) 

 = 𝜆1 𝜆2 𝜆3 𝜆4 . (68) 

he closed-form quartic solver (AnalyticQS) given by Eqs. (40) and

41) is then applied to re-compute the roots of the quartic equation de-

ned by coefficients a, b, c and d . 

For a comparison, the roots of this quartic are also computed by

 numerical eigenstructure solver (NumericQS). In this case, the eig

unction from the numpy.linalg package has been applied to a compan-

on matrix derived from the same coefficients. Note that the eig func-

ion directly calls the LAPACK subroutine dgeev.f written in Fortran 90

 Anderson et al., 1999 ). 

The errors in both computations are estimated using an absolute er-

or measure: 

 𝑘 = |𝜆𝑟𝑒𝑓 
𝑘 

− 𝜆𝑘 |, for 𝑘 = 1 , ., 4 , (69)

here 𝜆
𝑟𝑒𝑓 

𝑘 
is the test root and 𝜆k is the root computed by a specific

lgorithm. 

Fig. 2 illustrates the statistical representation of the absolute errors

omputed by Eq. (69) for 𝑁 = 10 6 independent root samples obtained

y AnalyticQS and by NumericQS. The root spread is computed as the

atio of the largest to the smallest root: 

𝑆 𝑗 = 

max ( |𝜆𝑗 |) 
min ( |𝜆𝑗 |) , for 𝑗 = 1 , ., 𝑁. (70)



N. Krvavica et al. Advances in Water Resources 122 (2018) 187–205 

Fig. 2. Boxplot of the errors in computing the roots by: A) the proposed closed-form quartic solver (AnalyticQS) and B) numerical eigenstructure solver (NumericQS). 

Boxes denote the interquartile range and median value, while whiskers denote min and max values. 
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Table 1 

Test I: CPU times in (s) for different grid sizes obtained by the LF, GFORCE, 

N-Roe, PVM-Roe, IFCP, and A-Roe schemes (best of 5 runs). 

No. of points LF GFORCE N-Roe PVM-Roe IFCP A-Roe 

50 0.24 0.27 0.49 0.36 0.30 0.32 

100 0.53 0.63 1.45 0.95 0.71 0.73 

200 1.38 1.62 4.89 2.81 1.93 1.89 

400 3.65 4.76 16.81 8.69 5.47 5.46 

800 12.10 16.42 66.46 30.42 18.21 18.08 

1600 43.23 57.57 257.86 108.87 57.42 62.11 

n  

s  

b  

u  

c  

p

 

m  

t  

R  

f  

L  

s  

n  

m  

r  

e

 

p  

l  

i  

R  

a  

t  

t  

a  

r  

t  

n

here N is the number of samples in the set of independent roots (one

illion). The spread of computed roots ranges from 1 to 10 7 . 

From Fig. 2 we observe that the average error for AnalyticQS lies

etween 10 −14 < 𝐸 𝑘 < 10 −15 , and that the maximum errors are always

elow 10 −11 . Both the maximum and the average errors are lower in the

roposed analytic method (AnalyticQS) than in the NumericQS. Further-

ore, AnalyticQS has produced 19.1% of perfect results ( 𝐸 𝑘 = 0 ) over

ne million trials, while NumericQs has produced 6% of such results

these were excluded from the set presented by a boxplot in Fig. 2 ). 

More importantly, not only is AnalyticQS more accurate than Nu-

ericQS, but it is significantly faster. Best of five runs revealed that An-

lyticQS takes 0.333 s and NumericQS 7.634 s of computational time to

olve one million quartic equations, which represents more than one

rder of magnitude improvement. Strobach (2010) found similar er-

ors and computational speed-ups (13 × ) when comparing these two

pproaches for randomly generated real roots with RS < 10 5 . 

.2. Test I: The internal dam-break 

In the following two tests, the efficiency of the proposed A-Roe

cheme is evaluated by comparing its accuracy and CPU times against

ax-Friedrichs (LF), GFORCE, PVM-Roe, IFCP, and the N-Roe scheme.

oth A-Roe and N-Roe schemes correspond to the generalized Q-scheme

f Roe with upwinded source terms and Harten’s entropy fix. The only

ifference between them is the implementation of the eigenstructure

olver; N-Roe scheme uses numerical solver (NumericQS), whereas the

-Roe scheme uses the proposed analytical closed-form solver (Analyt-

cQS). 

A two-layer flow through a rectangular channel with flat bottom to-

ography is considered. This test was introduced by Fernández-Nieto

t al. (2011) to evaluate the accuracy of numerical schemes in simu-

ating an internal dam-break problem over a flat bottom topography

 ( 𝑥 ) = 0 m. The spatial domain is set to [0, 10], and the initial condition

s given by: 

 1 ( 𝑥, 0) = 

{ 

0 . 2 m , if 𝑥 < 5 m 

0 . 8 m , otherwise 

 2 ( 𝑥, 0) = 

{ 

0 . 8 m , if 𝑥 < 5 m 

0 . 2 m , otherwise 
(71) 

 1 ( 𝑥, 0) = 𝑢 2 ( 𝑥, 0) = 0 m s −1 (72)

Non-reflective conditions are imposed at the boundaries, and the rel-

tive density ratio is set to 𝑟 = 0 . 98 . Several grid densities are considered,
193 
amely Δx = 1/5, 1/10, 1/20, 1/40, 1/80, and 1/160 m. A fixed time

tep Δt was chosen to allow for a more direct comparison of CPU times

etween numerical schemes. A constant ratio of Δ𝑡 = 0 . 15Δ𝑥 s m 

−1 was

sed in this test, which gives CFL ≈0.6, depending on the scheme and

orresponding maximum eigenvalues. The reference solution is com-

uted using the N-Roe scheme and a dense grid of 3200 points. 

Fig. 3 compares LF, GFORCE, N-Roe, PVM-Roe, IFCP, and A-Roe nu-

erical schemes at 𝑡 = 10 s with Δ𝑥 = 1∕40 m against the reference solu-

ion. The results clearly show that the A-Roe scheme, similarly as the N-

oe, PVM-Roe, and IFCP schemes, provides more accurate and less dif-

used interface and velocities in comparison to GFORCE, and especially

F method, for the same grid density. This is in agreement with the re-

ults presented by Castro et al. (2010) , who evaluated several first-order

umerical schemes. Furthermore, N-Roe and A-Roe scheme produce al-

ost identical results, some differences occur only due to round-off er-

ors when computing eigenstructures, as demonstrated in the previous

xample. 

Table 1 shows CPU times in (s) for different grid densities. As ex-

ected, LF and GFORCE have similar CPU times, which are several times

ower than the N-Roe and PVM-Roe scheme. However, the A-Roe scheme

s significantly faster than the N-Roe (up to 4.1 times) and the PVM-

oe scheme (up to 75%), with the CPU times comparable to GFORCE

nd IFCP schemes. As expected, the differences in simulation times be-

ween the N-Roe and A-Roe schemes increase with the number of spa-

ial points because of a larger number of eigenvalues that are required

t each time step. That is, as the number of spatial points increases, the

atio of the CPU time needed to compute eigenvalues to the total CPU

ime increases, so the speed-up of the A-Roe method becomes more pro-

ounced. 
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Fig. 3. Test I: Results obtained by LF, GFORCE, N-Roe, PVM-Roe, IFCP and A-Roe scheme, compared to the reference solution, at 𝑡 = 10 s with Δ𝑥 = 1∕40 m. 

Fig. 4. Test I: CPU time vs Error E Φ for Lax-Friedrichs, GFORCE, N-Roe, PVM-Roe, IFCP, and A-Roe scheme, compared to the reference solution (log-log scale). 
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To further evaluate the efficiency of each scheme, a CPU time vs .

ormalized root square error E Φ is presented in Fig. 4 : 

 Φ = 

√ ∑𝑀 

𝑛 =1 
[
Φ( 𝑥 𝑛 , 𝑡 𝑒𝑛𝑑 ) − Φ𝑟𝑒𝑓 ( 𝑥 𝑛 , 𝑡 𝑒𝑛𝑑 ) 

]2 √ ∑𝑀 

𝑛 =1 Φ𝑟𝑒𝑓 ( 𝑥 𝑛 , 𝑡 𝑒𝑛𝑑 ) 2 
, (73)
194 
here M is number of spatial points, and Φ = ℎ, 𝑢, where ℎ = ℎ 1 , ℎ 2 are

omputed layer depths, 𝑢 = 𝑢 1 , 𝑢 2 are computed layer velocities, and Φref 

re the corresponding reference values. The results show that A-Roe

ethod is superior to the LF, GFORCE, N-Roe, and PVM-Roe schemes

hen efficiency is considered, and almost identical to the IFCP scheme;

t has the same accuracy as the N-Roe method, with CPU times much
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Fig. 5. Test II: Results obtained by the LF, GFORCE, N-Roe, PVM-Roe, IFCP, and A-Roe scheme, compared to the reference solution, at 𝑡 = 5 s with Δ𝑥 = 1∕8 m. 

Fig. 6. Test II: CPU time vs Error E Φ for LF, GFORCE, N-Roe, PVM-Roe, IFCP, and A-Roe scheme, compared to the reference solution (log-log scale). 

195 



N. Krvavica et al. Advances in Water Resources 122 (2018) 187–205 

Fig. 7. Test III: Results of the interface obtained by N-Roe and A-Roe scheme, compared to the reference solution, at 𝑡 = 10 , 20 , 40 and 60 s with Δ𝑥 = 1∕20 m. 

c  

o  

w  

N

3

 

w  

C  

a  

c  

i  

(

 

i  

i

ℎ

ℎ  

𝑢  

 

a  

t  

I  

e  

Δ  

i  

i

 

a  

e  

s  

r  

t  

s  

t  

a  

m  

t

 

t  

t  

s  

i  

t

 

n  

t  

a  
loser to the GFORCE and IFCP schemes. We should note that a square

f the pseudo-Jacobian matrix is computed here for the IFPC scheme,

hich can be avoided to save the computation time (see Fernández-

ieto et al., 2011 ). 

.3. Test II: A Riemann problem with flat bottom 

The second case of a two-layer flow through a rectangular channel

ith flat bottom topography is considered. This test was introduced by

astro et al. (2001) to demonstrate that the uncoupled layer-by-layer

pproach is unsuitable for time-dependent two-layer exchange flows. It

an also be used to evaluate the accuracy of different numerical schemes

n computing non-regular time-dependent solutions over a flat bottom

 e.g. , ( Castro et al., 2010 )). 

The initial free-surface is horizontal and the interface is character-

zed by two steep fronts. The spatial domain is set to [0, 100], and the

nitial condition is given by: 

 1 ( 𝑥, 0) = 

{ 

0 . 5 m , if 𝑥 < 50 m 

0 . 55 m , otherwise 

 2 ( 𝑥, 0) = 

{ 

0 . 5 m , if 𝑥 < 50 m 

0 . 45 m , otherwise 
(74)

 1 ( 𝑥, 0) = 𝑢 2 ( 𝑥, 0) = 2 . 5 m s −1 (75)

Non-reflective conditions are imposed at the boundaries, and the rel-

tive density ratio is set to 𝑟 = 0 . 98 . As in the previous example, the solu-

ions are obtained using the Lax-Friedrichs, GFORCE, N-Roe, PVM-Roe,
196 
FCP, and A-Roe numerical schemes. Several grid densities are consid-

red, namely Δx = 1, 1/2, 1/4, 1/8, 1/16, and 1/32 m. A fixed time step

𝑡 = 0 . 1Δ𝑥 s m 

−1 was used in this test, which gives CFL ≈0.6, depend-

ng on the scheme and a maximum eigenvalue. The reference solution

s computed using the N-Roe scheme and a dense grid of 6400 points. 

Fig. 5 compares Lax-Friedrichs, GFORCE, N-Roe, PVM-Roe, IFCP,

nd A-Roe numerical schemes at 𝑡 = 5 s with Δ𝑥 = 1∕8 m against a ref-

rence solution. As expected, the results show that the A-Roe scheme,

imilarly as the N-Roe, PVM-Roe, and IFCP schemes, provide more accu-

ate values in comparison to GFORCE, and especially to LF scheme, for

he same grid density. In comparison to the previous example, GFORCE

cheme here behaves better due to smaller differences between the ex-

ernal and internal eigenvalues. Same as in the previous example, N-Roe

nd A-Roe scheme give almost identical results. The results are in agree-

ent with ( Castro et al., 2010 ), where the same accuracy was found for

hese numerical schemes. 

Table 2 shows CPU times in (s) for different grid densities. Again,

he LF and GFORCE schemes have similar CPU times, which are several

imes lower than the N-Roe and PVM-Roe schemes, while the A-Roe

cheme shows CPU times that are much closer to the GFORCE, almost

dentical to the IFCP scheme and significantly faster than the N-Roe (up

o 3.8 times) and the PVM-Roe schemes (up to 83%). 

To further evaluate the efficiency of each scheme a CPU time vs .

ormalized root square error Eq. (73) is given in Fig. 6 . The results show

hat A-Roe is better than the LF, GFORCE, N-Roe, and PVM-Roe schemes,

nd almost identical to the IFCP scheme, when efficiency is considered;
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Fig. 8. Test IV: Detail of the interface and bottom layer velocity obtained by N-Roe and A-Roe scheme, compared to the reference solution, at 𝑡 = 2 s with Δ𝑥 = 1∕20 
m. 

Table 2 

Test II: CPU times in (s) for different grid sizes obtained by LF, GFORCE, 

N-Roe, PVM-Roe, IFCP, and A-Roe schemes (best of 5 runs). 

No. of points LF GFORCE N-Roe PVM-Roe IFCP A-Roe 

100 0.05 0.06 0.12 0.08 0.06 0.06 

200 0.11 0.13 0.36 0.21 0.15 0.16 

400 0.29 0.36 1.33 0.63 0.41 0.42 

800 0.88 1.16 4.73 2.18 1.30 1.30 

1600 2.98 4.08 18.39 7.97 4.51 4.53 

3200 11.14 15.56 72.40 30.73 16.95 16.78 
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t has the same accuracy as N-Roe method, with CPU times closer to the

FORCE and IFCP scheme. 

.4. Test III: Wet-dry front over a smooth bottom topography 

A case of a two-layer flow through a rectangular channel with non-

at bottom topography is considered next. This test was introduced by

ernández-Nieto et al. (2011) to verify the well-balanced properties of

umerical schemes when a non-flat bed and wet-dry fronts appear. 

The spatial domain is set to [0, 10], and the bed elevation is defined

y the following function: 

 ( 𝑥 ) = 

{ 

0 . 0 m , if 𝑥 < 5 m 

𝑥 −5 
10 m , otherwise 

(76)

hereas, the initial condition is defined by: 

 2 ( 𝑥, 0) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
0 . 6 m , if 4 . 5 < 𝑥 < 5 m 

0 . 0 m , if 𝑥 > 7 m 

max 
{ 

0 . 2 m − 𝑏 ( 𝑥 ) 
0 . 0 m 

otherwise 

, (77)

 1 ( 𝑥, 0) = 1 . 0 m − ℎ 2 ( 𝑥, 0) − 𝑏 ( 𝑥 ) (78)

 1 ( 𝑥, 0) = 0 . 0 m s −1 𝑢 2 ( 𝑥, 0) = 0 . 0 m s −1 (79)

Non-reflective conditions are imposed at the boundaries, the relative

ensity ratio is set to 𝑟 = 0 . 99 , spatial grid size is set to Δx = 1/20 m, and

𝐹 𝐿 = 0 . 8 . Only the N-Roe and A-Roe schemes are compared, both with

n implemented numerical technique for dealing with wet-dry fronts

 Castro et al., 2005 ). The wet-dry parameter is set to 𝜀 = 10 −3 m. The

eference solution is computed using the N-Roe scheme and a dense grid

f 3200 points. The CPU time of the complete simulation has been found
197 
o be 25.4 s for the N-Roe scheme, and 10.7 s for the proposed A-Roe

cheme. 

Fig. 7 shows the evolution of the interface obtained by the N-Roe and

-Roe scheme, compared to the reference solution. Both the N-Roe and

-Roe scheme produce almost identical results at every time step, and

oth schemes successfully deal with wet-dry fronts. These results are in

greement with those presented by Fernández-Nieto et al. (2011) . 

.5. Test IV: A Riemann problem with a bottom step 

Another case of a two-layer flow through a rectangular channel with

on-flat bottom topography is considered. This test was introduced by

ernández-Nieto et al. (2011) to examine how numerical schemes deal

ith bottom steps in the very extreme circumstances for which the SWE

heory may cease to be applicable. 

The spatial domain is set to [0, 10], and the bed elevation is defined

y a single bottom step: 

 ( 𝑥 ) = 

{ 

0 . 5 m , if 𝑥 < 5 m 

0 . 0 m , otherwise 
(80)

hereas the initial condition is defined by: 

 2 ( 𝑥, 0) = 

{ 

0 . 2 m , if 𝑥 < 5 m 

0 . 1 m , otherwise 
ℎ 1 ( 𝑥, 0) = 1 . 5 m − ℎ 2 ( 𝑥, 0) − 𝑏 ( 𝑥 ) 

(81) 

 1 ( 𝑥, 0) = 0 . 0 m s −1 𝑢 2 ( 𝑥, 0) = 0 . 1 m s −1 (82)

Non-reflective conditions are imposed at the boundaries, the relative

ensity ratio is set to 𝑟 = 0 . 98 , spatial grid size is set to Δx = 1/20 m, and

𝐹 𝐿 = 0 . 7 . Again, only the N-Roe and A-Roe schemes are compared

ere, both with an implemented numerical technique for wet-dry fronts

 Castro et al., 2005 ) to deal with an emerging bottom step. The reference

olution is computed using the N-Roe scheme and a dense grid of 3200

oints. The CPU time of the complete simulation has been found to be

.89 s for the N-Roe scheme, and 0.33 s for the proposed A-Roe scheme.

Fig. 8 shows the interface depth and bottom layer velocity at 𝑡 = 2 . 0
. The A-Roe and N-Roe scheme produce very similar results, without

ny appearance of negative depths. The position and propagation veloc-

ty of the downstream wave, are in agreement with values obtained by

ernández-Nieto et al. (2011) . The only difference between the results

ay be seen immediately downstream from the bed step, which is pre-

umably the result of a different correction technique used to achieve a

ell-balanced solution and deal with resonant problems in this partic-

lar test. Namely, the technique proposed by Castro et al. (2010) sets
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Fig. 9. Test V: Upper and lower layer depths and velocities obtained by N-Roe without hyperbolicity correction and A-Roe method with three different implemen- 

tations of the hyperbolicity correction, at 𝑡 = 0 . 2 and 𝑡 = 2 . 0 s and Δ𝑥 = 1∕200 m. 
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he velocities at the interface to zero, whereas the hydrostatic recon-

truction (HR) used by Fernández-Nieto et al. (2011) redefines the ge-

metry source term at the discontinuous interface differently from the

echnique proposed by Castro et al. (2005) applied here. Nevertheless,

he modification of the A-Roe by the HR technique is straightforward,

irectly following the HR extension of the Roe scheme (see Castro et al.,

007 ), because these two schemes differ only by the method in which

he eigenstructure is computed and the correction algorithm for the hy-

erbolicity loss. However, a detailed performance analysis of the A-Roe

cheme extended by HR is outside the scope of this manuscript. 

.6. Test V: Exchange flow with non-hyperbolic initial conditions and 

 = 0 . 99 

The final three numerical tests demonstrate the performance of

he proposed hyperbolicity correction. The solutions are obtained
198 
y the N-Roe method using the real Jordan decomposition, as well

s using the A-Roe method with three different implementations

f the hyperbolicity correction: ( i ) approximate correction proposed

y Castro et al. (2011) (A-RoeC), ( ii ) iterative correction based

n the full discriminant of the characteristic polynomial prosed by

arno et al. (2017) (A-RoeS), and ( iii ) iterative correction based on the

iscriminant of the resolvent cubic equation presented in Section 2.4 ,

hich makes an integral part of the analytical solutions for the eigen-

alues proposed here (A-Roe). 

A two-layer exchange flow through a rectangular channel with flat

ottom topography is again considered. This particular test has been

roposed by Castro et al. (2011) to demonstrate how un-physical os-

illations may occur and eventually blow-up the computation when hy-

erbolicity loss is not treated adequately. The initial free-surface is hori-

ontal and the interface is characterized by two steep fronts. The spatial
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Fig. 10. Test V: Comparison of maximum values of 𝐹 max 
𝑐𝑜𝑟𝑟 

at each time step, 

computed by different implementations of the hyperbolicity correction. 
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omain is set to [ − 1, 1], and the initial condition is given by: 

 1 ( 𝑥, 0) = 

{ 

0 . 4 m , if |𝑥 | < 0 . 5 m 

0 . 5 m , otherwise 
ℎ 2 ( 𝑥, 0) = 1 . 0 m − ℎ 1 ( 𝑥, 0) (83)

 1 ( 𝑥, 0) = 0 . 2 m s −1 , 𝑢 2 ( 𝑥, 0) = −0 . 3 m s −1 (84)

Non-reflective conditions are imposed at the boundaries, and the rel-

tive density ratio is set to 𝑟 = 0 . 99 . All of the computations are per-

ormed using a small grid size Δ𝑥 = 1∕200 m and a fixed time step

𝑡 = 0 . 001 s, which gives CFL ≈0.7. 

Fig. 9 shows the upper and lower layer depths and velocities at 𝑡 = 0 . 2
 and at 𝑡 = 2 . 0 s. The results computed by the A-Roe method with the

roposed integrated hyperbolicity correction (A-Roe) are practically the

ame as the results obtained using the iterative correction proposed by

arno et al. (2017) (A-RoeS) and the results using the approximate cor-

ection proposed by Castro et al. (2011) (A-RoeC). Note that the N-Roe

ethod without hyperbolicity correction does not change the initial ve-

ocities in the layers, but as a consequence, strong oscillations appear at

he interface discontinuities. Shortly after 𝑡 = 0 . 2 s the computation by

he N-Roe method blows-up. On the other hand, when either of three

yperbolicity corrections is applied, the velocities are reduced shortly

fter the start of the simulation, but the computation remains stable un-

il a steady-state is reached at 𝑡 = 2 . 0 s. These findings are in agreement

ith the results obtained by Castro et al. (2011) , who found similar dif-

erences between the Roe scheme that is based only on the real Jordan

ecomposition, and the Roe scheme that additionally uses an approx-

mate hyperbolicity correction, as well as Sarno et al. (2017) , who re-

eated this numerical test and showed that their iterative hyperbolicity

lgorithm behaves very similarly. 

To examine the behaviour of the proposed iterative correction al-

orithm in more detail, Fig. 10 shows the computed maximum friction

 

max 
𝑐𝑜𝑟𝑟 

which is added to the system to prevent the hyperbolicity loss and

he appearance of complex eigenvalues. Since the initial conditions are

n a non-hyperbolic state, a relatively high 𝐹 max 
𝑐𝑜𝑟𝑟 

is added in the first time

tep; namely 46.3 m 

2 s −2 by both the A-Roe and the A-RoeS method, and

6.5 m 

2 s −2 by the approximate A-RoeC method. Just after a few time

teps 𝐹 max 
𝑐𝑜𝑟𝑟 

reduces to under 10 −1 m 

2 s −2 . These results confirm that the

roposed A-Roe algorithm is almost identical to the iterative solution

iven by Sarno et al. (2017) and very close to the approximate solution

iven by Castro et al. (2011) when r ≈1. 

The CPU time of the complete simulation has been found to be 5.14 s

or A-RoeC, 8.01 s for the iterative A-RoeS, and 6.4 s for the proposed A-

oe scheme. Clearly, the proposed algorithm A-Roe is noticeably faster

han A-RoeS, because the discriminant of the resolvent cubic equation

s solved at each time step instead of the full discriminant of a quartic

quation. 
199 
.7. Test VI: Exchange flow with non-hyperbolic initial conditions and 

 = 0 . 3 

Another case of a two-layer exchange flow through a rectangular

hannel with flat bottom topography is now considered as proposed by

arno et al. (2017) to illustrate the advantages of the iterative hyperbol-

city correction based on the discriminant of the characteristic polyno-

ial over an approximate treatment proposed by Castro et al. (2011) .

he main idea here is to show that the approximate eigenvalues can pro-

uce not only less accurate results, but they can even completely change

he two-layer flow structure. The spatial domain is set to [ − 1, 1], and

he initial condition is given by: 

 1 ( 𝑥, 0) = 

{ 

0 . 4 m , if |𝑥 | < 0 . 5 m 

0 . 5 m , otherwise 
ℎ 2 ( 𝑥, 0) = 1 . 0 m − ℎ 1 ( 𝑥, 0) (85)

 1 ( 𝑥, 0) = 1 . 0 m s −1 , 𝑢 2 ( 𝑥, 0) = −3 . 0 m s −1 (86)

Non-reflective conditions are imposed at the boundaries, but in con-

rast to the previous example, the relative density ratio is set to be as

ow as 𝑟 = 0 . 3 . The same numerical schemes are used as in the previous

xample, with the same grid size and time step. 

Fig. 11 shows the upper and lower layer depths and velocities at

 = 0 . 25 s and at 𝑡 = 5 . 0 s. First of all, strong oscillations are noticeable for

he N-Roe method without the hyperbolicity correction, which blows-

p after 𝑡 = 0 . 25 . The results computed by the A-Roe scheme are practi-

ally the same as the results computed by the A-RoeS scheme. However,

ifferences are noticeable between the two iterative schemes and the

pproximate A-RoeC scheme, because of a different way in which the

dditional friction is computed. As a consequence, the corrected veloc-

ties are significantly lower; at the end of the simulation, 𝑢 1 = −0 . 06
 s −1 is computed by the approximate A-RoeC scheme, in comparison

o 𝑢 1 = +0 . 19 m s −1 computed by the other two iterative schemes (A-

oe and A-RoeS). Not only are velocities lower, but the A-RoeC scheme

hanges the flow structure, which becomes unidirectional. On the other

and, A-Roe and A-RoeS compute the optimal friction and preserve the

orrect flow directions. The same behaviour of approximate and itera-

ive hyperbolicity correction was found by Sarno et al. (2017) . 

To assess the behaviour of three correction algorithms in more de-

ail, the temporal changes of 𝐹 max 
𝑐𝑜𝑟𝑟 

are shown in Fig 12 . As in the pre-

ious example, a relatively high 𝐹 max 
𝑐𝑜𝑟𝑟 

is added in the first time step,

amely 235.6 m 

2 s −2 by the A-Roe and A-RoeS scheme, and 318.3 m 

2 

 

−2 by the A-RoeC scheme with an approximate correction. Due to an

verestimated 𝐹 max 
𝑐𝑜𝑟𝑟 

by the A-RoeC scheme, there is no need for further

orrections in the subsequent time steps. However, the flow structure

s compromised. On the other hand, 𝐹 max 
𝑐𝑜𝑟𝑟 

computed by the iterative

chemes A-Roe and A-RoeS, is reduced to under 10 m 

2 s −2 after the sec-

nd time step, and under 1 m 

2 s −2 after 𝑡 = 0 . 1 s. The results also confirm

hat the proposed A-Roe scheme provides almost identical values as the

-RoeS during the entire simulation. 

The CPU time of the complete simulation has been found to be 21.3 s

or A-RoeC, 46.7 s for the iterative A-RoeS, and 36.2 s for the proposed

-Roe scheme. Again, the results show that the proposed algorithm A-

oe is noticeably faster than A-RoeS. 

.8. Test VII: Exchange flow over smooth bottom topography and with 

yperbolic initial conditions 

A final case of a two-layer exchange flow through a rectangular

hannel with non-flat smooth bottom topography is now considered to

arefully compare the influence of the A-Roe hyperbolicity correction

gainst frictionless solution (N-Roe scheme with a real Jordan decom-

osition). In this example, a transcritical flow eventually develops with

n internal shock. 

The spatial domain is set to [0, 10], and the bed elevation is defined

y the following function: 

 ( 𝑥 ) = 0 . 5 exp 
(
−( 𝑥 − 5) 2 

)
(87)
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Fig. 11. Test VI: Upper and lower layer depths and velocities obtained by N-Roe without hyperbolicity correction and A-Roe method with three different implemen- 

tations of the hyperbolicity correction, at 𝑡 = 0 . 25 s and 𝑡 = 5 . 0 s for Δ𝑥 = 1∕200 m. 
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hereas, the initial condition is defined by: 

 2 ( 𝑥, 0) = 0 . 8 m − 𝑏 ( 𝑥 ) , ℎ 1 ( 𝑥, 0) = 1 . 2 m − ℎ 2 ( 𝑥, 0) − 𝑏 ( 𝑥 ) (88)

 1 ( 𝑥, 0) = 0 . 15 m s −1 , 𝑢 2 ( 𝑥, 0) = −0 . 2 m s −1 (89)

n contrast to previous two examples, here we have hyperbolic initial

onditions. Non-reflective conditions are imposed at the boundaries, and

he relative density ratio is set to 𝑟 = 0 . 98 . All of the computations are

erformed using a small grid size Δ𝑥 = 1∕100 m and 𝐶𝐹 𝐿 = 0 . 7 . 
Fig. 13 shows the evolution of the interface and lower layer velocity

t 𝑡 = 1, 10 and 30 s. The results computed by the A-Roe method with

he proposed hyperbolicity correction are almost identical to the N-Roe

cheme without the correction up until 𝑡 = 1 . 0 s, when non-hyperbolic

onditions develop. Both schemes are able to compute the results until
200 
teady-state conditions are reached at 𝑡 = 30 s. However, N-Roe scheme

evelops spurious oscillations which grow in time. The CPU time of the

omplete simulation has been found to be 190 s for A-Roe, and 239 s

or the N-Roe scheme. 

To examine the behaviour of the proposed iterative correction algo-

ithm in more detail, Fig. 14 shows the evolution of the discriminant

, computed correction 𝐹 max 
𝑐𝑜𝑟𝑟 
, as well as external and internal eigenval-

es (waves), when The N-Roe scheme without correction and the A-Roe

cheme with hyperbolicity correction are applied. 

Since the initial conditions are in a hyperbolic state, at the begin-

ing of the simulation, Δ is positive and of the same order for both

chemes ( Fig. 14 ). At 𝑡 = 1 . 0 s the velocity difference increases and a loss

f hyperbolicity occurs. From this point forward, the numerical scheme

ithout correction produces negative Δ, although real eigenvalues are

ecovered through real Jordan decomposition. On the other hand, A-
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Fig. 12. Test VI: Comparison of maximum values of 𝐹 max 
𝑐𝑜𝑟𝑟 

at each time step, 

computed by different implementations of the hyperbolicity correction. 

R  

a

 

𝑡  

p  

N  

t  

t  

R  

i  

c  

t

4

 

t  

m  

t  

t  

s  

t  

p  

n

 

t  

s  

t  

t  

(  

f  

t  

(  

F

a

oe with hyperbolicity correction maintains a positive discriminant by

pplying extra friction of the order ∼ 10 −2 m 

2 s −1 . 

Similarly, the external and internal eigenvalues are identical up to

 = 1 . 0 s for both schemes ( Fig. 14 ). After this point, when a loss of hy-

erbolicity occurs, the A-Roe scheme produces different results from the

-Roe scheme. Without correction, the external eigenvalues grow, and

he internal eigenvalues collapse to a single value which increases over
ig. 13. Test VII: Evolution of the interface and lower layer velocities obtained by N

t 𝑡 = 1, 10 and 30 s, and Δ𝑥 = 1∕100 m. 

201 
ime. On the other hand, hyperbolicity correction implemented in the A-

oe scheme maintains constant external wave velocities, and, although

t appears that double internal eigenvalues are also present here, the

orrection algorithm actually preserves some small difference between

hem (due to the fact that Δ is always larger than zero). 

. Conclusion 

In this study, a new implementation of the Roe scheme for solving

wo-layer shallow-water equations has been introduced. The proposed

ethod is based on an analytical formulation for the eigenstructure of

he quasi-Jacobian matrix. This analytical expression is derived from

he explicit Ferrari’s solution to the characteristic polynomial, which is a

ignificantly faster alternative to numerical eigensolvers. The analysis of

he accuracy and computational speed of the closed-form quartic solver,

resented in this paper, suggests that it can be considered as reliable as

umerical eigenstructure solvers and up to 20 times faster. 

The efficiency of the proposed A-Roe scheme was also examined in

erms of its accuracy and computational speed and compared to the Roe

cheme in which the viscosity matrix is computed numerically (N-Roe),

wo incomplete Riemann solvers (Lax-Friedrich and GFORCE), as well as

wo PVM schemes (PVM-Roe and IFCP). For a fixed computational grid

both in space and time), the proposed A-Roe scheme is up to 4 times

aster than the N-Roe scheme, while maintaining the same accuracy of

he solution. The A-Roe scheme is also faster than the PVM-Roe scheme

up to 83%). In comparison to the LF and GFORCE, the A-Roe scheme
-Roe without hyperbolicity correction and A-Roe with hyperbolicity correction, 
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Fig. 14. Test VII: Evolution of the discriminant, 𝐹 max 
𝑐𝑜𝑟𝑟 
, and the external and internal eigenvalues. 
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𝑝  
s somewhat computationally slower (30–60%), but significantly more

ccurate. When compared to the IFCP scheme, the A-Roe is slightly more

ccurate with very similar computational speeds. 

In addition to its computational speed, a significant advantage of

he A-Roe method is an integrated correction algorithm for keeping the

olutions of two-layer shallow-water equations inside the hyperbolic do-

ain. It ensures that only real eigenvalues are considered in the process

f the Roe linearisation. The iterative algorithm uses the Illinois solver

nd is based on the numerical treatment for the loss of hyperbolicity pro-

osed by Sarno et al. (2017) , which in contrast to Castro et al. (2012) is

pplicable for any density ratio. The only difference is that the hyper-

olicity loss prediction and correction are based on the sign of the dis-

riminant of a resolvent cubic equation and that both actions are imple-

ented at the intermediate step when the eigenstructure is calculated.

umerical tests of exchange flow show that the proposed algorithm is

s accurate as the iterative approach by Sarno et al. (2017) regardless

f the density ratio, but requires 25–30% less computational time. The

pproximate algorithm by Castro et al. (2012) is 25–60% faster than the

roposed one; however, in the case of small density ratios it may fail to

reserve the exchange flow structure and produce unphysical results. 

To conclude, the A-Roe scheme proves to be an efficient alternative

o a numerical implementation of the Roe scheme tested here for two-

ayer shallow-water flows; it is as accurate but computationally much

aster. The proposed scheme gives more precise results for all values of

 and therefore it has a wider range of possible applications in compari-

on to approximate expressions. The efficiency of the proposed scheme

hould not depend on a specific problem and it should increase with the

umber of cells. Although the A-Roe method has been tested here only

or two-layer shallow-water flows, it can easily be applied to some other

on-conservative hyperbolic systems defined by four coupled partial dif-

𝑞  

202 
erential equations, such as two-phase fluids. Furthermore, the extension

o two-dimensional problems or higher-order schemes is straightforward

ollowing the same approach as for any Roe scheme. 
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ppendix A. Analytic solution to the eigenstructure 

.1. Solution to a quartic equation 

Let us consider a general normalized 4th order polynomial equation

quartic) 

 

4 + 𝑎𝑥 3 + 𝑏𝑥 2 + 𝑐𝑥 + 𝑑 = 0 . (A.1)

o find the analytical solution to roots of Eq. (A.1) , first the cubic term

 

3 is eliminated and the general polynomial is converted into a so-

alled depressed quartic by a change of variables. Following Ferrari’s

ethod ( Abramowitz and Stegun, 1965 ), a substitution 𝑥 = 𝑦 − 𝑎 ∕4 is
ntroduced, which gives a depressed polynomial 

 

4 + 𝑝𝑦 2 + 𝑞𝑦 + 𝑟 = 0 , (A.2)

here 

 = 𝑏 − 6 
(
𝑎 

4 

)2 
, (A.3)

 = 𝑐 − 2 𝑏 
(
𝑎 
)
+ 8 
(
𝑎 
)3 
, (A.4)
4 4 
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 = 𝑑 − 𝑐 

(
𝑎 

4 

)
+ 𝑏 

(
𝑎 

4 

)2 
− 3 
(
𝑎 

4 

)4 
. (A.5)

The depressed polynomial can be rewritten as 

𝑦 2 + 

𝑝 

2 

)2 
= − 𝑞𝑦 + 

𝑝 2 

4 
− 𝑟. (A.6)

ext, expression 2 𝑧𝑦 2 + 𝑧𝑝 + 𝑧 2 is added to both sides of Eq. (A.6) , which

fter some regrouping gives 

𝑦 2 + 

𝑝 

2 
+ 𝑧 

)2 
= 2 𝑧𝑦 2 − 𝑞𝑦 + 𝑧 2 + 𝑧𝑝 + 

𝑝 2 

4 
− 𝑟. (A.7)

hen z is chosen to be any non-zero root z 0 of the so-called resolvent

ubic equation 

 𝑧 3 + 8 𝑝𝑧 2 + (2 𝑝 2 − 8 𝑟 ) 𝑧 − 𝑞 2 = 0 , (A.8)

he right-hand side of Eq. (A.7) can be written as a perfect square; there-

ore, Eq. (A.7) becomes 

𝑦 2 + 

𝑝 

2 
+ 𝑧 0 

)2 
= 

( 

𝑦 
√
2 𝑧 0 − 

𝑞 

2 
√
2 𝑧 0 

) 2 

. (A.9)

nd finally, Eq. (A.9) can be written as a factorized quadratic equation

 

𝑦 2 + 

√
2 𝑧 0 𝑦 + 

𝑝 

2 
+ 𝑧 0 − 

𝑞 

2 
√
2 𝑧 0 

) ( 

𝑦 2 − 

√
2 𝑧 0 𝑦 + 

𝑝 

2 
+ 𝑧 0 + 

𝑞 

2 
√
2 𝑧 0 

) 

= 0 ,

(A.10) 

hich is easily solved by a quadratic formula. 

Therefore, the solutions to the roots of the general quartic

q. (A.1) are given by 

 1 , 2 = − 

𝑎 

4 
− 

1 
2 
√
2 𝑧 0 ± 

1 
2 

√ √ √ √ − 

( 

2 𝑝 + 2 𝑧 0 − 

2 𝑞 √
2 𝑧 0 

) 

, (A.11)

 3 , 4 = − 

𝑎 

4 
+ 

1 
2 
√
2 𝑧 0 ± 

1 
2 

√ √ √ √ − 

( 

2 𝑝 + 2 𝑧 0 + 

2 𝑞 √
2 𝑧 0 

) 

. (A.12)

For a general normalized 3rd order polynomial equation (cubic) 

 

3 + 𝛼𝑥 2 + 𝛽𝑥 + 𝛾 = 0 , (A.13)

 real solution is given by Cardano’s formula ( Abramowitz and Ste-

un, 1965 ) 

 0 = 𝑠 1 + 𝑠 2 − 

𝛼

3 
, (A.14)

ith 

 1 = 

3 
√ 

𝑅 + 

√
𝑅 

2 + 𝑄 

3 , (A.15)

 2 = 

3 
√ 

𝑅 − 

√
𝑅 

2 + 𝑄 

3 , (A.16)

here 

 = 

3 𝛽 − 𝛼2 

9 
, (A.17)

 = 

9 𝛼𝛽 − 27 𝛾 − 2 𝛼3 

54 
. (A.18)

ote that Eq. (A.14) may be also written as either 𝑥 0 = 𝑠 1 − 

𝑄 

𝑠 1 
− 

𝛼

3 or

 0 = 𝑠 2 − 

𝑄 

𝑠 2 
− 

𝛼

3 , which is computationally more convenient since only

 1 or s 2 needs to be computed. Furthermore, if 𝑄 = 0 then we have to

hoose s 1 if R > 0 and s 2 if R < 0 to get non-zero value. Therefore, the

olution to the resolvent cubic Eq. (A.8) is given as 

 0 = 𝑠 − 

𝑄 − 

𝑝 
, (A.19)
𝑠 3 

203 
here 

 = 

3 
√ 

𝑅 + sign ( 𝑅 ) 
√
𝑅 

2 + 𝑄 

3 , (A.20)

 = 

3( 𝑝 2 ∕4 − 𝑟 ) − 𝑝 2 

9 
= 

− 𝑏 2 − 12 𝑑 + 3 𝑎𝑐 
36 

, (A.21)

 = 

9 𝑝 ( 𝑝 2 ∕4 − 𝑟 ) + 27 𝑞 2 ∕8 − 2 𝑝 3 

54 
= 

27 𝑎 2 𝑑 − 9 𝑎𝑏𝑐 + 2 𝑏 3 − 72 𝑏𝑑 + 27 𝑐 2 
432 

. 

(A.22) 

To eliminate redundant divisions and optimize computation of

qs. (A.11) and (A.12) , the root of the resolvent cubic equation is ex-

ressed via 

 𝑧 0 = 

1 
3 

( 

𝑆 + 

Δ0 
𝑆 

− 2 𝑝 
) 

, (A.23)

here 

 = 6 𝑠 = 

3 

√ √ √ √ 

Δ1 + sign (Δ1 ) 
√ 

Δ2 
1 − 4Δ3 

0 

2 
, (A.24)

0 = −36 𝑄 = 𝑏 2 + 12 𝑑 − 3 𝑎𝑐, (A.25)

1 = 432 𝑅 = 27 𝑎 2 𝑑 − 9 𝑎𝑏𝑐 + 2 𝑏 3 − 72 𝑏𝑑 + 27 𝑐 2 . (A.26)

Note that Δ2 
1 − 4Δ3 

0 = − 

27 
64  𝑐𝑢𝑏𝑖𝑐 = −27  𝑞𝑢𝑎𝑟𝑡𝑖𝑐 , which is a much sim-

ler expression for the discriminant of the resolvent cubic equation

 𝑐𝑢𝑏𝑖𝑐 and especially the discriminant of the quartic equation  𝑞𝑢𝑎𝑟𝑡𝑖𝑐 

iven by Eq. (56) . Therefore, if Δ2 
1 − 4Δ3 

0 < 0 , three resolvent cubic roots

re all real and the quartic roots are either all complex or all real. In

his case, Eq. (A.23) can be solved trigonometrically ( Lambert, 1906 ),

hich is computationally faster than computing the cube root required

n Eq. (A.24) : 

 0 = 

1 
3 

( √
Δ0 cos 

𝜙

3 
− 𝑝 

) 

, (A.27)

here 

= arccos 
⎛ ⎜ ⎜ ⎜ ⎝ 

Δ1 

2 
√ 

Δ3 
0 

⎞ ⎟ ⎟ ⎟ ⎠ . (A.28) 

To summarize, the real solution to the quartic equation can be sim-

lified as follows: 

 1 , 2 = 

− 

𝑎 

2 ± 

√
𝑍 − 

√ 

− 𝐴 − 𝑍 ∓ 

𝐵 √
𝑍 

2 
, (A.29)

 3 , 4 = 

− 

𝑎 

2 ± 

√
𝑍 + 

√ 

− 𝐴 − 𝑍 ∓ 

𝐵 √
𝑍 

2 
, (A.30)

here 

 = 2 𝑧 0 = 

1 
3 

( 

2 
√
Δ0 cos 

𝜙

3 
− 𝐴 

) 

, (A.31)

ith 

 = 2 𝑝 = 2 𝑏 − 

3 𝑎 2 
4 
, (A.32)

 = 2 𝑞 = 2 𝑐 − 𝑎𝑏 + 

𝑎 3 
. (A.33)
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.2. Explicit solution to the inverse of the eigenvector matrix 

Inverse of matrix K , whose columns are eigenvectors, is derived from

 

−1 = 

1 
det ( 𝐊 ) 

adj ( 𝐊 ) , (A.34)

hich, after some regrouping and simplifications, gives 

 

−1 = 

[
𝐤 1 𝐤 2 𝐤 3 𝐤 4 , 

]𝑇 
(A.35)

ith 

 𝑘 = 

{ 

( 𝑐 2 1 − 𝑢 2 1 ) 𝛿𝑘 + 𝜉𝑘 

𝜁𝑘 
− 

𝑐 2 1 − 𝑢 2 1 − 2 𝑢 1 𝛿𝑘 + 𝜅𝑘 

𝜁𝑘 

𝑐 2 1 𝛿𝑘 

𝜁𝑘 
− 

𝑐 2 1 
𝜁𝑘 
, 

} 

(A.36)

 = 1 , ., 4 , where 

𝑘 = 

4 ∑
𝑗 =1 ,𝑗 ≠𝑘 

𝜆𝑗 − 2 𝑢 1 , (A.37)

𝑘 = 

4 ∏
𝑗 =1 ,𝑗 ≠𝑘 

𝜆𝑗 , (A.38)

𝑘 = 

4 ∑
𝑗 =1 ,𝑗 ≠𝑘 

4 ∏
𝑖 =1 ,𝑖 ≠𝑗,𝑘 

𝜆𝑖 , (A.39)

𝑘 = 

4 ∏
𝑗 =1 ,𝑗 ≠𝑘 

( 𝜆𝑗 − 𝜆𝑘 ) . (A.40)
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