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A new implementation of the Roe scheme for solving two-layer shallow-water equations is presented in this paper.
The proposed A-Roe scheme is based on the analytical solution to the characteristic quartic of the flux matrix,
which is an efficient alternative to a numerical eigensolver. Additionally, an accurate method for maintaining
the hyperbolic character of the governing system is proposed. The efficiency of the quartic closed-form solver is
examined and compared to numerical eigensolvers. Furthermore, the accuracy and computational speed of the
A-Roe scheme is compared to the Roe, Lax-Friedrichs, GFORCE, PVM, and IFCP schemes. Finally, numerical tests

are presented to evaluate the efficiency of the iterative treatment for the hyperbolicity loss. The proposed A-Roe
scheme is as accurate as the Roe scheme, but much faster, with computational speeds closer to the GFORCE and

IFCP scheme.

1. Introduction

Shallow-water equations (SWE) are widely used to simulate geophys-
ical flows with dominantly horizontal processes. These equations can be
extended to a two-layer system that describes the flow of two superim-
posed and immiscible layers of fluid with different densities or even
different phases. For example, a two-layer configuration is found in sea
straits (Castro et al., 2001, 2004), highly stratified estuaries (Krvavica
et al., 2017a,b), gravity currents (Adduce et al., 2011; La Rocca et al.,
2012), mudflows (Canestrelli et al., 2012), debris flows (Majd and
Sanders, 2014; Pelanti et al., 2008), submarine avalanches (Fernandez-
Nieto et al., 2008; Luca et al., 2009), and pyroclastic flows (Doyle et al.,
2011). Although such processes can be described more accurately by 3D
Navier-Stokes equations, two-layer models make a popular alternative
because of their simplicity and a significantly lower computational cost.

Two-layer SWE are defined as a coupled system of conservation laws
with source terms, or so-called balance laws (Castro et al., 2001). These
equations are challenging to solve numerically because of the layer cou-
pling and non-conservative source terms accounting for the variable
geometry or friction. In recent years, numerical methods for solving
two-layer equations have received great attention and have been an
object of intense research (Bouchut and Zeitlin, 2010; Canestrelli and
Toro, 2012; Castro et al., 2004, 2001, 2010; Fernandez-Nieto et al.,
2011; Kurganov and Petrova, 2009). A number of authors have pre-
sented different numerical schemes for non-conservative hyperbolic sys-
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tems based on the finite-difference method (Fjordholm, 2012; Liu et al.,
2015), finite-element method (Ljubenkov, 2015) or, more often, finite-
volume method (FVM) (Bouchut and Zeitlin, 2010; Canestrelli and Toro,
2012; Castro et al., 2001; Kurganov and Petrova, 2009).

Among the most popular and robust FVM schemes are Roe schemes,
which belong to a family of approximate Riemann solvers (Bermudez
and Vazquez, 1994; Castro et al.,, 2001; Parés and Castro, 2004).
Roe schemes have good well-balanced properties and in compari-
son to incomplete Riemann solvers, such as Lax-Friedrichs, HLL or
FORCE/GFORCE methods, are less diffusive and provide better reso-
lution of discontinuities (Castro et al., 2010; Kesserwani et al., 2008).
However, Roe schemes require computation of the full eigenstructure of
the flux matrix at each time step (Castro et al., 2010). When analytical
expressions for the eigenstructure are unavailable, a spectral decompo-
sition of the flux matrix is needed, making Roe schemes computationally
expensive and, therefore, less attractive for practical applications, such
as simulating complex geophysical flows in sea straits, stratified estuar-
ies, submarine avalanches, etc.

In this research field, there do not exist explicit formulations for
eigenvalues of coupled two-layer SWEs which are directly expressed in
terms of the conserved variables (Castro et al., 2004). Because of the
coupling and the corresponding 4 x 4 flux matrix, some authors suggest
that it is not possible to derive the explicit form of eigenvalues, e.g., “..
simple explicit expressions of the system’s eigenvalues cannot be derived... ”
(Pelanti et al., 2008), “.. the explicit expression for the eigenvalues cannot
be found.” (Kim and LeVeque, 2008), “The coupling between the layers...
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does not provide explicit access to the system eigenstructure” (Abgrall and
Karni, 2009), whereas others are aware of the existence of the analyti-
cal solutions to quartic equations but considered them to be too compli-
cated or less efficient, e.g., “.. there is not an easy explicit expression of the
eigenvalues... ” (Fernandez-Nieto et al., 2011), “.. a direct calculation of
its eigenvalues can be hard... ” (Fjordholm, 2012), “.. a closed form of the
eigenvalues is non-trivial... ” (Sarno et al., 2017), etc. On the other hand,
Cardano-Vieta formula for cubic equations has been used as a more ef-
ficient approach in comparison to numerical solvers when computing
eigenstructure of Saint Venant-Exner models, defined by a cubic char-
acteristic equation (see Castro et al., 2009; Carraro et al., 2018).

Considering the computational cost of spectral decomposition
and the prevailing opinion that explicit eigenvalues are ”unavail-
able”, Fernandez-Nieto et al. (2011) and Castro and Fernandez-Nieto
(2012) have recently proposed new Riemann solvers based on the poly-
nomial approximation of the viscosity matrix, which should represent a
good compromise between the computational speed and accuracy.

Taking all these specific concerns into account, the main goal of this
paper is to present a more efficient implementation of the Roe scheme
for a coupled two-layer SWE system, which is based on a compact ana-
lytical solution to the eigenstructure. New analytical formulae are pro-
posed, which may be used instead of numerical tools and algorithms
when computing eigenvalues and eigenvectors at each time step. Addi-
tionally, a numerical treatment for the hyperbolicity loss is presented
that always leads to a state that is close to the boundary of the hyper-
bolicity region but inside its interior, which avoids the appearance of
both complex and double eigenvalues.

This paper is organized as follows: first, the governing system of a
coupled two-layer SWE system is defined; next, a path-conserving nu-
merical scheme is presented with an analytical solution to the eigen-
structure; several results are also presented, namely, the computational
cost and accuracy analysis of the closed-form quartic solver, as well as
several performance tests of the proposed scheme; and finally, the re-
sults are discussed and conclusions are drawn.

2. Two-layer shallow-water flow: Theory, Roe scheme and
analytical eigenvalue resolution

2.1. Governing system of equations

Let us consider the following PDE system derived for a one-
dimensional (1D) two-layer shallow-water flow in prismatic channels
with rectangular cross-sections of constant width, written in a general
vector form (Castro et al., 2001):

ow of (w)
ot 0x
where x refers to the axis of the channel and t is time. The vector of

conserved quantities w, the flux vector f(w) and the bathymetry source
term g(w) are respectively defined as follows (Castro et al., 2001):

ow

=B 2™ + gw) M

hy 2 g 0
9o, g2 ds
—~+2h —gh, 5=
_Ja _Jh 27 _ 1d
w= , fwy=4™ , gw) = X e 2)
hy , @ & 0 4 (
q Lo, g2 —oh, Qb
: ﬁ + EhZ gh2 dx
where h; is the layer thickness (or depth), g; = h;u; is the layer flow

rate per unit width, y; is the layer-averaged horizontal velocity, g is
acceleration of gravity, b is the bed elevation, and index j = 1,2 denotes
the respective upper and lower layer. Matrix B(w) is a result of coupling

the two-layer system, defined as (Castro et al., 2001):

0 0 0 0
10 0 —gh O

Bw =, 0 0 ol 3
—grh, O 0 0
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where r = p, /p, < 1 is the ratio between the upper layer density p; and
the lower layer density p,.

The right-hand side of Eq. (1) contains the terms describing the mo-
mentum exchange between two layers, and source terms for channel
bathymetry. The system can be rewritten in the following quasi-linear
form (Castro et al., 2001):

ow

ow
5+ A(W)g =g(w), “
where
A = 2 Bw) = g - Bw) ®)
W

is the pseudo-Jacobian matrix that contains the flux gradient terms as
well as the coupling terms:

0 1 0 0
2—u? 2u c? 0
— 1" 1 1 1
AW 0 0 0 1 ©®
rcg 0 c% - u% 2u,.

where cj? = gh;, is propagation celerity of internal and external pertur-
bations (waves), for j = 1,2.

The characteristic polynomial of A(w) is defined as p(1) =
det(A — AId), where 1 is the eigenvalue of .A(w) and Id is a 4 x 4 identity
matrix. The coefficients of the 4th order characteristic polynomial

P = +al +bA% +cA+d ©)
are derived from Eq. (6):

a=—2(u1 +u2), ®)
b=u%—clz+4ulu2+u§—c§, [C)]
¢ ==2uy(u} - ¢¥) = 2u, (3 - c}). 10)
d= (u%—clz)(ug—cg) —rclzcg. (11)

Substituting coefficients a, b, ¢, and d, Eq. (7) can be written in the form

2.2

p(A) = (A% =2u d+u} = c}) (A = 2upd +u3 — cF) — reje;. (12)

where four roots 4, k = 1, .,4, of p(4) are the eigenvalues of matrix A(w).

The eigenvalues define the propagation speeds of barotropic (exter-
nal) and baroclinic (internal) perturbations. External eigenvalues Afxr
are always real (Castro et al., 2001); however, at sufficiently large rela-
tive velocities Au = |u; — u,|, the internal eigenvalues 4, may become
complex and the governing system may lose its hyperbolic character
(Castro et al., 2011).

Since explicit eigenvalues of a two-layer system are considered too
complicated and unavailable (Abgrall and Karni, 2009; Fernandez-Nieto
et al., 2011; Fjordholm, 2012; Kim and LeVeque, 2008; Pelanti et al.,
2008; Sarno et al., 2017), the following approximations derived under
the assumption of r~1 and u; ~u, are usually used for internal and
external eigenvalues (Schijf and Schonfled, 1953):

Aoy = Uy = Vg(hy + hy) (13)
hih —u,)?
PEY) A PO L LS PR C k) , (14)
int | gs(=n(h + hy)
with
hyuy + hyu, hyuy + hyuy
= 42 d v, = —— 15
T A Ay S (15)

From Eq. (14) it follows that internal eigenvalues become complex
for
('41 - '42)2

_Wzmr 16
g +hy) (16)
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Note that Eq. (16) is valid only when dealing with two layers of similar
densities (r = p,/p, ~ 1) and when velocities in both layers are com-
parable (u; ~u,). These conditions are found in some stratified flows
in nature, such as exchange flows through sea straits (Castro et al.,
2004; Chakir et al., 2009) or some cases of highly stratified estuaries
(Krvavica et al., 2017b). For a general application, however, this condi-
tion may not be necessary to ensure hyperbolicity, as demonstrated by
Sarno et al. (2017).

2.2. Numerical scheme

A family of Roe schemes is considered here, which represent a partic-
ular case of path-conservative numerical schemes based on the finite vol-
ume method. Path-conservative schemes are used to approximate gen-
eral conservation systems with non-conservative terms (Parés, 2006).
A first order accurate path-conservative scheme for Eq. (4) without the
bathimetry source term is written as follows (Parés, 2006):

+D},,)

where Ax and At are the respective spatial and time increment (con-
sidered constant here for simplicity), w! denotes the approximate cell-
averaged values of the exact solution obtained by the numerical scheme

(1+1 =w"

At (4
Wi = i_E<Di—l/2 {an

atcell I; = [x;_ 5, X;41 o] in time 1" = nAt, and matrices Dii+1/2 are inter-
mediate functions defined at the cell interface x; 5
DEp = AL W W) - (W — W) (18)
with Aii+1 P defined by a decomposition of the Roe linearisation of the
form (Parés, 2006):

1
AL, = E(Ai+1/2 +0Q,,17) 19)
where
A1y = A+ AL 20)

and Q,,,, represents a numerical viscosity matrix, whose choice de-
pends on a particular numerical scheme.

For a two-layer system defined by Eq. (1), Roe linearisation is per-
formed at the cell interfaces x;,,/, between cells I; and [, as follows
(Castro et al., 2001):

T

Wiri2 = {hmis Qe Pogrip Qi) s @2n
where

h..+h..

Jsi i+l

hjp=—F——Ji=12 22)

ujinhyituionhiig
Ujivl)a = ,ji=12, (23)

Vhii+\/hjin

dji+1/2 = hj,i+1/2uj,i+l/2’j =12 24)
and also
Airip =Jiz12 = Bigiyos (25)

where matrices J;;,/, and B/, correspond to J(w;,; /) and B(w,,, ),
respectively. The viscosity matrix in Roe methods corresponds to
Castro et al. (2001):

Qi+1/2 = |-A-i+1/2| (26)
with
lAis12] = Kip ol A 2K @7

where |A;, ;| is a Nx N diagonal matrix whose coefficient are the ab-
solute eigenvalues |4,|,k = 1,., N, K, ; is the same-size matrix whose
columns are right eigenvectors corresponding to those eigenvalues and

Ki_+11 P is the inverse of K, /. To achieve good well-balanced properties,
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the source terms are upwinded using projection matrices (Castro et al.,
2001):

Pt

i+1/2 = 28)

1 . _
zKi+l/2 (1d + Slgn(AiJrl/z))K,-J,ll/z-

where sign(A, ;) is @ NXN diagonal matrix whose coefficient are
sign(4;),k=1,.,N.
To finally solve a coupled two-layer system, the Roe scheme is writ-
ten in the following form (Castro et al., 2001):
At

with = Wi = = (£ -

i i Ax i fi+1/2)

At
+ 375 Bi-172(W) = W) +Biy (W, = w))]

At .
+E(P7—l/2gi‘l/2 +P[+1/2gi+l/2), (29)
with the numerical flux
1 1
firi2= E(fln +f ) - E‘AHI/Z)(W:?H - w). 30

To prevent the numerical viscosity of the Roe scheme from vanishing
when any of the eigenvalues of the matrix |A,,, ,| are zero, the Harten
regularization (entropy fix) is applied (Castro et al., 2001). Numerical
difficulties may also appear in Roe scheme when one of the layers vanish
and when wet-dry fronts develop at the interface. The former issue is re-
solved by setting a wet-dry parameter (¢), so that when the depth of one
of the layers in a cell is lower than &, the cell is considered as a one-layer
system and a corresponding two-equation PDE system (Bermudez and
Vazquez, 1994) is solved instead of Eq. (1). The well-balanced property
of the numerical scheme in the presence of wet-dry fronts is achieved
by a source term modification for the two-layer system introduced by
Castro et al. (2005).

Note that Eq. (19) can also be applied to other numerical schemes
from the family of path-conserving schemes, such as Lax-Friedrichs (LF)
(Toro, 2013), where

Ax

Qivipp = 31d, (€1
or FORCE and GFORCE schemes (Toro, 2013), where

Ax At o
Qiipp=(-o)T Mt o AL, ), (32)

with w = 0.5 and @ = 1/(1 + CF L), respectively. The CFL number is de-
fined as (Castro et al., 2010):

CFL = Ar max(4;), k=1,,N. (33)
Ax

where CFL stands for Courant-Friedrichs-Lewy number.

As stated earlier, in comparison to incomplete Riemman solvers,
Roe schemes are less diffusive and have good well-balanced proper-
ties (Castro et al., 2010). However, Roe schemes require the numerical
computation of the whole eigenstructure of matrix A, ,, which can be
computationally very expensive. A possible alternative to the spectral
decomposition required in the Roe scheme is the redefinition of the vis-
cosity matrix Q,,/, by the Polynomial Viscosity Matrix (PVM), which
can be written as (Castro and Fernandez-Nieto, 2012):

3

Qipip2 = Al = Z akA,l-:.l/z B34
k=0

where «; are the solutions of the following linear system:

L4 A% ﬂ? % 141

1A 2 Al |45 35)

LA 4 Af]e [A5]

LAy 4 Al [ A4

The eigenvalues are computed by approximate expressions given by
Egs. (13) and (14). This scheme will be denoted here as the PVM-Roe
scheme.
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Since the CPU time needed to compute Eq. (35) is similar to the
one required to obtain Eq. (27), a simpler and faster Intermediate Field
Capturing Parabola (IFCP) scheme was derived from the family of PVM
schemes, given by Fernandez-Nieto et al. (2011):

2
OQi1pp=aold+ a1 Ay p + ;A7 s (36)
where a; are defined as:

| 4]

1 A /12§ ay =1 A ¢ (37)

1 Xint Xint a |)(int|
with
Hint = Sexs max (|41, 1441), (38)
and

sign(A; + 4y),  if(A3 + 4g) #0

S, = .

ext { 1, otherwise (39

As in the original PVM scheme, the approximate expressions given by
Egs. (13) and (14) are used to compute the eigenvalues. However, in this
case, the coefficients a; can be explicitly defined (see Ferndndez-Nieto
et al., 2011).

2.3. Definition of the A-Roe numerical scheme

We propose a new implementation of the Roe scheme named A-
Roe. The A-Roe scheme is defined by Egs. (29) and (30), where the
viscosity matrix is given by Eq. (27), but instead of using a numerical
solver (denoted here as N-Roe) or approximating the viscosity matrix,
the eigenstructure is solved analytically — eigenvalues are computed by
a closed-form solution to the roots of the characteristic quartic poly-
nomial given by Eq. (12), and then the corresponding eigenvectors are
easily obtained. The proposed scheme shares the same properties as the
Q-scheme of Roe regarding the well-balanced properties and the capa-
bility to deal with wet-dry fronts (the same numerical techniques and
modifications designed for Roe methods are directly applicable to the
A-Roe method proposed here).

2.3.1. Eigenvalues and a closed-form quartic solver

An analytical solution for quartic equations has been derived by Fer-
rari in the 16th century (Abramowitz and Stegun, 1965). This closed-
form solution is obtained by the method of radicals and it depends on
the solution of a residual cubic equation, which can be solved by the
Cardano’s method (Abramowitz and Stegun, 1965). Although this clas-
sical method is the fastest (Strobach, 2015), it is considered problematic
due to cancellation errors for certain combinations of polynomial coef-
ficients (Flocke, 2015; Strobach, 2010, 2015).

No theoretical analysis of the cancellation error for the closed-form
quartic solver has been made so far, but several studies found that the
analytical solution produces inferior results for small roots in case of a
large root spread, i.e., when one of the roots is several orders of magni-
tude larger than the others (Flocke, 2015; Strobach, 2010, 2015). For ex-
ample, Strobach (2010) demonstrated that a closed-form quartic solver
produced an average error between 10~'4 and 10~ for root spreads in
range 1-1000, but for some individual cases with extreme root spreads
in the range of 108, the quartic solver produced completely corrupted
results. For this reason, Ferrari’s analytical solution is considered unre-
liable and is usually avoided in computational use.

Although the closed-form quartic solver is unsuitable for general
use, its accuracy should be re-evaluated in the context of this study to
assess if it could still be considered reliable for computing the eigen-
structure of the pseudo-Jacobian matrix of the governing SWE system
given by Eq. (6). First of all, high accuracy (error < 10~'*) of the quartic
solver is not imperative because: (i) there are many viable alternatives
to complete Riemann solvers that only approximate the viscosity matrix
(Castro and Fernandez-Nieto, 2012), and (ii) the traditional approach in
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developing these models is based on a matrix eigensolver, such as the
LAPACK subroutine dgeev.f (Anderson et al., 1999), which also shows a
similar average error as the closed-form quartic solver (although, it is
more reliable for extreme root spreads) (Strobach, 2010). More impor-
tantly, the eigenvalues of the pseudo-Jacobian matrix have a physical
meaning - they represent the propagation speeds of the internal and ex-
ternal gravity waves. Considering that the propagation speeds of these
waves depend mainly on the flow velocity and water depth (Schijf and
Schonfled, 1953), extreme eigenvalue spreads should not be expected
since they are not physically possible in real geophysical flows.

Ferrari’s method for solving quartic equations (Abramowitz and Ste-
gun, 1965) is given by a series of simple algebraic equations involving
one root of a cubic equation (see Appendix A.1). Although it is possible
to combine these equations into a single explicit expression, it is too ex-
tensive to be presented in a journal format, and certainly not optimized
to be implemented in a computational algorithm. To our knowledge,
such formulation is available only on Wikipedia (2018). Therefore, in
this study, we present a simple closed-form approach for finding real
roots of the quartic Eq. (7) consisting of eight simple algebraic evalua-
tions. A detailed derivation of these equations is given in A.1.

Given the coefficients a, b, ¢ and d of the characteristic 4th order
polynomial, defined by Egs. (8)—(11), the real eigenvalues are computed
by the following expressions:

a —_ B
. 44z A-z3 2
Aa=Ait, = 5 , (40)
a / - B
) Se\Z+ [-A-Z7 7
Iy =A% = 3 . (41)
where
1 ¢
Z=3 24/Aq cos 3-4) (42)
A1
¢ = arccos s 43)
3
2,/43
with
3aq?
A=2b— ", 44
7 (44)
a3
B:2c—ab+I. (45)
and
Ag = b* +12d - 3ac, (46)
A, = 27a*d — 9abc + 2b> — 72bd + 27> 47

2.3.2. Eigenvectors
The 4 x4 matrix K whose columns are right eigenvectors k; corre-
sponding to eigenvalues 4, k = 1, .,4 are found by solving the following

equation:
A-AIdDK =0 (48)

Since A — AId is singular there are infinite solutions to Eq. (48), i.e., for
an assumed value for one component of the eigenvector, the remaining

components are easily computed. For example, if we assume k ;; = 1,
the remaining eigenvector components are obtained from Eq. (48) as:
T
ke={l X m A} 49)
where
2
(4 —w)
Hp=1— ———— (50)

Cl
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and

K=[k; ky, k3 k. 5D

Note that the associated eigenvectors can alternatively be de-
rived as proposed by Rosatti et al. (2008) or Murillo and Garcia-
Navarro (2010) for a cubic characteristic polynomial.

2.3.3. The numerical viscosity matrix
Once the eigenstructure has been computed, the viscosity matrix | A|
can be obtained from Eq. (27) as:

|A| = KIAK™! (52)
where
4] 0
Al = - (53)
0 | 441

To avoid computationally expensive numerical calculation of the in-
verse matrix, K~! can be obtained from:

- ;adj(K).

= det(K) 9

Full explicit expressions for K~! are given in A.2. However, we found
that it is computationally less demanding to rewrite Eq. (52) as

K'A|" = KIADT, (55

which corresponds to a general matrix equation Ax = B, solve it numer-
ically for x (for example, by a LAPACK routine gesv (Anderson et al.,
1999)), and then transpose it.

2.4. Numerical treatment for the loss of hyperbolicity

Since the proposed A-Roe scheme is valid only for real eigenvalues,
an appropriate numerical treatment is required in the case of hyperbol-
icity loss when complex eigenvalues appear. In the past, the problem
of the hyperbolicity loss has been bypassed by applying a real Jordan
decomposition of the pseudo-Jacobian matrix; however, such numeri-
cal workaround may still cause un-physical oscillations or unrealistic
results (Castro et al., 2011). Introducing the third intermediate layer
seemed promising and physically justified, however, it proved to be only
partially successful (Castro et al., 2012).

Recently, several more physically realistic treatments have been pro-
posed. Castro et al. (2011) have introduced a simple numerical algo-
rithm, which adds an extra amount of friction at every cell where com-
plex values are detected. The amount of friction is computed at each
cell to satisfy the approximate hyperbolic condition given by Eq. (16).
This approach is physically justified because the friction term may be
seen as an approximation of an additional momentum flux which ap-
pears locally due to turbulent mixing processes. In real flows, loss of
hyperbolicity corresponds to strong shear stress and the development of
interfacial instabilities, such as Kelvin—-Helmholtz waves (Castro et al.,
2011; Sarno et al., 2017). Once the instabilities appear, turbulent mix-
ing initiates vertical mass and momentum transfer, and an intermediate
layer of a finite thickness develops. Krvavica et al. (2018) also showed
that adding physically realistic friction and entrainment terms may pre-
vent the loss of hyperbolicity in some situations.

Sarno et al. (2017) improved this idea by computing the discriminant
D of the characteristic polynomial given by Eq. (12). When D > 0, roots
of the characteristic polynomial, i.e., eigenvalues, are either all real or
all complex. Since two (external) eigenvalues are always real, the re-
maining two (internal) eigenvalues can only be real if D > 0. However,
Sarno et al. (2017) computed D from a formula for a discriminant of a
general polynomial p(x) of a degree n, as a function of its coefficients
a,, given by:

D(p) = (172 Lgerrp, )

ay

(56)
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where p’ is derivative of polynomial p, and R(p, p’) is the Sylvester matrix
of pand p’ (Sarno et al., 2017). For a quartic equation, this formula yields
a rather long expression (for details see (Sarno et al., 2017)).

In this work, a similar approach to Sarno et al. (2017) is proposed;
however, the choice of the discriminant and the implementation of
the hyperbolicity correction differs. First, the hyperbolicity condition
is based on the discriminant of the resolvent cubic equation D_,,. (see
Appendix A.1) given by

27
It is easy to verify that A = gDcub,—C = 27D yqriic; however, A is more
compact and therefore less computationally demanding than D,
given by Eq. (56).

Furthermore, to take advantage of the fact that A-Roe method solves
Ay and A; when computing the linearized values at every intercell, the
hyperbolicity verification and correction is performed directly at this
stage. The optimal correction is then only added as an extra friction
source term when computing the values at the next time step. This im-
plementation requires almost no extra computational time for verifying
the hyperbolicity. Additional computation is required only when cor-
recting the momentum term if hyperbolicity loss is detected at a specific
intercell at some time step.

The proposed implementation is described as follows:

=4A3-A}>0 7

cubic

quartic

1. Once the solutions w/ are known at each cell I; at time ", the first part
of the Roe linearisation is computed by Egs. (21)—(25) to get con-
served values w;,, /, at cell interfaces /; |/, and compute linearized
pseudo-Jacobian matrix A,

2. Coefficients of the characteristic polynomial are then computed for
conserved values w, | pat cell interfaces by Egs. (8)-(11)

3. At every cell interface, the first step of the explicit quartic solver is
computed by Egs. (46) and (47) to get Ay and A,

4. The discriminant of the resolvent cubic equation A is computed us-
ing Eq. (57) and the hyperbolicity condition is verified at each cell
interface:

e If A>0, the quartic solver continues computing Egs. (40) and
(41) to obtained the eigenvalues. The eigenvector matrix is con-
structed using Eq. (51), and finally the viscosity matrix is com-
puted by Eq. (52) (fully analytical) or Eq. (55) (semi-analytical,
but faster)

e If A <0, the linearized velocities at those interfaces (computed
at step 1) are corrected by an optimal friction term:

: n _n
. corr _ m AF Slgn(”z,,‘+1/2 ”|,1+1/2)
W) 1) = U o+ Ao, W
Li+1/2
sign(u; w12 i+1/2)
n corr _ .n _ > s
(”2,i+1/2) = W12 AtrFeop, m ; (58)
2,i+1/2
where F,,. is a minimum value that satisfies the condition given

by Eq. (57). Sarno et al. (2017) examined several iterative meth-
ods and found that the fastest algorithm for this kind of prob-
lems is the Illinois method (Dowell and Jarratt, 1971), which is
implemented here as follows. First, an interval is chosen so that

Fomr € [ag, byl, where ay = 0 (no correction) and

i =yl

by =
1 r
At +
( hiivip2z  haivip2 >

which yields a hyperbolic state with u; ;. —uy ;.1 = 0. The
next guess for F, in the p-th iteration is calculated through

(59)

orr, p
r . Fbp)(b, —a,)
cormp IR f(by) = f(a,)’
where f(b,) = A(b,) and f(a,) = A(a,) are the discriminants cor-

responding to velocities (uy;.12)°" and (u;41,)°", respec-
tively, corrected by F, through Eq. (58). At the next iteration

(60)

orr, p
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step, the interval pairs are chosen as follows:
(Freorrpr AFeorr )5 (b0 AY)) i A(b)A(F,,p, ) <O
(aps A@,)/2), (Foorrpr AFrgpr ) else.

The algorithm iterates until the condition |a, — b,| < ¢ is satisfied
(where ¢ is a convergence threshold), and the final solution is
given by:

61)

F,

vorr.p = Max (a,,b,). (62)

Since it always holds that A(ap)A(bp) <0, Eq. (62) and appropri-
ate e guarantee that the discriminant is always positive and larger
than zero A(F,,, ,) >0, which prevents possible problems with
singular eigenvector matrix due to double roots when A = 0.
After the correction is performed, the analytic solver continues
to compute the eigenstructure for the viscosity matrix through
Egs. (40), (41), (51), and (52) or (55).

5. Finally, the conserved values are computed for the next time step
using, for example, the Q-scheme of Roe, where the friction source
term F,,,, is added as an extra source term describing the vertical
momentum transfer between the layers:

=w' -
b Ax

(fi—1/2 - fi+l/2)

t
+ 2Ax [Bi—l/Z(w:" - W?_l) + Bi+1/2(w,"l+1 - W?)]

Ny _
Ax (Pi—]/2gi*1/2 + Pi+1/2gi+1/2>
+ AI(P:r—l/zsf,i—l/Z + Pi_+1/2sf»i+1/2)

where s,/ is the friction source term, defined as:

+

(63)

0

o
F corrmgn(”z,m /2

0

e i n -
rFm,,31gn(uz’m/2

u”
Sfitl/2 = 1,:+|/z> (64)

" i /2)
The friction source term is introduced to account for the momentum
exchange occurring as a result of the hyperbolicity loss (turbulent
mixing in real flows). Practically, it decreases the velocity difference
between the layers at the cell adjacent to the interface where hy-
perbolicity loss was detected, and hence prevents a transfer of the
hyperbolicity loss conditions to the next time step.
3. Results
To evaluate the performance of the proposed A-Roe scheme several
numerical tests are presented. First, the accuracy and computational
speed of the closed-form quartic solver are analysed. Next, several nu-
merical results are given to analyse the performance of the implemented
algorithm in computing a two-layer flow, with a special focus on the
computational speed and accuracy of the hyperbolicity correction algo-
rithm.
All numerical algorithms have been implemented in Python 3.6, us-
ing the Numpy package. The tests have been performed on 64-bit Win-
dows 10 machine with Intel Core i7-3770 3.4 GHz processor.

3.1. Computational accuracy and speed of the closed-form quartic solver

This subsection examines the performance and reliability of the ana-
lytical approach to eigenstructure of the governing system. The accuracy
and computational speed of the proposed closed-form quartic solver are
analysed for one million root combinations.

Since the main idea is to apply this quartic solver to the pseudo-
Jacobian matrix of the two-layer SWE system, physically realistic roots
are examined. Therefore, a large set of flow parameters, namely layer
depths 0 <h; 5 <100 m and velocities —20 < u; , <20 m s~!, as well as
density ratios 0.1 <r <1, have been randomly generated from a uniform
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Fig. 1. Probability distributions of four real roots representing the eigenvalues
of the two-layer SWE system.

distribution. Based on these parameters, approximate roots have been
calculated by Egs. (13) and (14). Only the solutions with all real roots
are then selected and statistically analysed to obtain a corresponding
probability distribution for each eigenvalue (Fig. 1).

Next, one million set of test roots 4; 5 3 4 are randomly gener-
ated as statistically independent samples of each probability distribu-
tion presented in Fig. 1. The coefficients of the characteristic quar-
tic Eq. (7) are then computed according to the following expressions
(Strobach, 2010):

a=—(hy + Ay + Ay + Ay) (65)
b=Aydy + (A + A)(As + Ag) + A3 A4 (66)
€= —A Ay(Ay + Ay) — A3 dg(Ay + Ay) (67)
d = A Az Ay (68)

The closed-form quartic solver (AnalyticQS) given by Egs. (40) and
(41) is then applied to re-compute the roots of the quartic equation de-
fined by coefficients a, b, c and d.

For a comparison, the roots of this quartic are also computed by
a numerical eigenstructure solver (NumericQS). In this case, the eig
function from the numpy.linalg package has been applied to a compan-
ion matrix derived from the same coefficients. Note that the eig func-
tion directly calls the LAPACK subroutine dgeey.f written in Fortran 90
(Anderson et al., 1999).

The errors in both computations are estimated using an absolute er-
ror measure:

E =4 =), for k=1,.4, (69)

where Aff

algorithm.

Fig. 2 illustrates the statistical representation of the absolute errors
computed by Eq. (69) for N = 10° independent root samples obtained
by AnalyticQS and by NumericQS. The root spread is computed as the
ratio of the largest to the smallest root:

_ max(|4;])
i min(|4;])’

is the test root and 4; is the root computed by a specific

for j=1,.,N. (70)
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10 B) NumericQS. CPU time: 7.634 s
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Fig. 2. Boxplot of the errors in computing the roots by: A) the proposed closed-form quartic solver (AnalyticQS) and B) numerical eigenstructure solver (NumericQS).
Boxes denote the interquartile range and median value, while whiskers denote min and max values.

where N is the number of samples in the set of independent roots (one
million). The spread of computed roots ranges from 1 to 107.

From Fig. 2 we observe that the average error for AnalyticQS lies
between 107 < E, < 10713, and that the maximum errors are always
below 10~!!. Both the maximum and the average errors are lower in the
proposed analytic method (AnalyticQS) than in the NumericQS. Further-
more, AnalyticQS has produced 19.1% of perfect results (E, = 0) over
one million trials, while NumericQs has produced 6% of such results
(these were excluded from the set presented by a boxplot in Fig. 2).

More importantly, not only is AnalyticQS more accurate than Nu-
mericQS, but it is significantly faster. Best of five runs revealed that An-
alyticQS takes 0.333 s and NumericQS 7.634 s of computational time to
solve one million quartic equations, which represents more than one
order of magnitude improvement. Strobach (2010) found similar er-
rors and computational speed-ups (13 x) when comparing these two
approaches for randomly generated real roots with RS < 10°.

3.2. Test I: The internal dam-break

In the following two tests, the efficiency of the proposed A-Roe
scheme is evaluated by comparing its accuracy and CPU times against
Lax-Friedrichs (LF), GFORCE, PVM-Roe, IFCP, and the N-Roe scheme.
Both A-Roe and N-Roe schemes correspond to the generalized Q-scheme
of Roe with upwinded source terms and Harten’s entropy fix. The only
difference between them is the implementation of the eigenstructure
solver; N-Roe scheme uses numerical solver (NumericQS), whereas the
A-Roe scheme uses the proposed analytical closed-form solver (Analyt-
icQS).

A two-layer flow through a rectangular channel with flat bottom to-
pography is considered. This test was introduced by Fernandez-Nieto
et al. (2011) to evaluate the accuracy of numerical schemes in simu-
lating an internal dam-break problem over a flat bottom topography
b(x) = 0 m. The spatial domain is set to [0, 10], and the initial condition
is given by:

02m, ifx<5m
h = ’
1. 0) {0.8 m, otherwise
08m, ifx<5m
ha(x, 0) = {0.2 m, otherwise 7D
up(x,0) = uy(x,0) =0 m s~} (72)

Non-reflective conditions are imposed at the boundaries, and the rel-
ative density ratio is set to r = 0.98. Several grid densities are considered,
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Table 1
Test I: CPU times in (s) for different grid sizes obtained by the LF, GFORCE,
N-Roe, PVM-Roe, IFCP, and A-Roe schemes (best of 5 runs).

No. of points LF GFORCE N-Roe PVM-Roe IFCP A-Roe
50 0.24 0.27 0.49 0.36 0.30 0.32
100 0.53 0.63 1.45 0.95 0.71 0.73
200 1.38 1.62 4.89 2.81 1.93 1.89
400 3.65 4.76 16.81 8.69 5.47 5.46
800 12.10 16.42 66.46 30.42 18.21 18.08
1600 43.23 57.57 257.86 108.87 57.42 62.11

namely Ax = 1/5, 1/10, 1/20, 1/40, 1/80, and 1/160m. A fixed time
step At was chosen to allow for a more direct comparison of CPU times
between numerical schemes. A constant ratio of At = 0.15Ax s m~! was
used in this test, which gives CFL ~ 0.6, depending on the scheme and
corresponding maximum eigenvalues. The reference solution is com-
puted using the N-Roe scheme and a dense grid of 3200 points.

Fig. 3 compares LF, GFORCE, N-Roe, PVM-Roe, IFCP, and A-Roe nu-
merical schemes at = 10 s with Ax = 1/40 m against the reference solu-
tion. The results clearly show that the A-Roe scheme, similarly as the N-
Roe, PVM-Roe, and IFCP schemes, provides more accurate and less dif-
fused interface and velocities in comparison to GFORCE, and especially
LF method, for the same grid density. This is in agreement with the re-
sults presented by Castro et al. (2010), who evaluated several first-order
numerical schemes. Furthermore, N-Roe and A-Roe scheme produce al-
most identical results, some differences occur only due to round-off er-
rors when computing eigenstructures, as demonstrated in the previous
example.

Table 1 shows CPU times in (s) for different grid densities. As ex-
pected, LF and GFORCE have similar CPU times, which are several times
lower than the N-Roe and PVM-Roe scheme. However, the A-Roe scheme
is significantly faster than the N-Roe (up to 4.1 times) and the PVM-
Roe scheme (up to 75%), with the CPU times comparable to GFORCE
and IFCP schemes. As expected, the differences in simulation times be-
tween the N-Roe and A-Roe schemes increase with the number of spa-
tial points because of a larger number of eigenvalues that are required
at each time step. That is, as the number of spatial points increases, the
ratio of the CPU time needed to compute eigenvalues to the total CPU
time increases, so the speed-up of the A-Roe method becomes more pro-
nounced.
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Fig. 3. Test I: Results obtained by LF, GFORCE, N-Roe, PVM-Roe, IFCP and A-Roe scheme, compared to the reference solution, at t = 10 s with Ax = 1/40 m.
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Fig. 4. Test I: CPU time vs Error E,, for Lax-Friedrichs, GFORCE, N-Roe, PVM-Roe, IFCP, and A-Roe scheme, compared to the reference solution (log-log scale).

To further evaluate the efficiency of each scheme, a CPU time vs.

normalized root square error Eg, is presented in Fig. 4:

2
\/Zi\il [CD(xn, tend) - q)ref(xn’ tend)]

\/ 2,1,\11 (Dref(xn’ terzd)2

Ey

(73)
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where M is number of spatial points, and ® = h,u, where h = h|, h, are
computed layer depths, u = u,, u, are computed layer velocities, and &'
are the corresponding reference values. The results show that A-Roe
method is superior to the LF, GFORCE, N-Roe, and PVM-Roe schemes
when efficiency is considered, and almost identical to the IFCP scheme;
it has the same accuracy as the N-Roe method, with CPU times much
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Fig. 5. Test II: Results obtained by the LF, GFORCE, N-Roe, PVM-Roe, IFCP, and A-Roe scheme, compared to the reference solution, at = 5 s with Ax = 1/8 m.
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Fig. 7. Test III: Results of the interface obtained by N-Roe and A-Roe scheme, compared to the reference solution, at r = 10,20, 40 and 60 s with Ax = 1/20 m.

closer to the GFORCE and IFCP schemes. We should note that a square
of the pseudo-Jacobian matrix is computed here for the IFPC scheme,
which can be avoided to save the computation time (see Fernandez-
Nieto et al., 2011).

3.3. Test II: A Riemann problem with flat bottom

The second case of a two-layer flow through a rectangular channel
with flat bottom topography is considered. This test was introduced by
Castro et al. (2001) to demonstrate that the uncoupled layer-by-layer
approach is unsuitable for time-dependent two-layer exchange flows. It
can also be used to evaluate the accuracy of different numerical schemes
in computing non-regular time-dependent solutions over a flat bottom
(e.g., (Castro et al., 2010)).

The initial free-surface is horizontal and the interface is character-
ized by two steep fronts. The spatial domain is set to [0, 100], and the
initial condition is given by:

0.5m, ifx<50m
hy(x,0) = {0.55 m, otherwise

05m, ifx<50m
hy(x,0) = {0.45 m, otherwise e
uy (x,0) = up(x,0) = 2.5m s~ (75)

Non-reflective conditions are imposed at the boundaries, and the rel-
ative density ratio is set to r = 0.98. As in the previous example, the solu-
tions are obtained using the Lax-Friedrichs, GFORCE, N-Roe, PVM-Roe,
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IFCP, and A-Roe numerical schemes. Several grid densities are consid-
ered, namely Ax=1,1/2,1/4,1/8,1/16, and 1/32m. A fixed time step
At =0.1Ax s m~! was used in this test, which gives CFL~ 0.6, depend-
ing on the scheme and a maximum eigenvalue. The reference solution
is computed using the N-Roe scheme and a dense grid of 6400 points.

Fig. 5 compares Lax-Friedrichs, GFORCE, N-Roe, PVM-Roe, IFCP,
and A-Roe numerical schemes at t = 5 s with Ax = 1/8 m against a ref-
erence solution. As expected, the results show that the A-Roe scheme,
similarly as the N-Roe, PVM-Roe, and IFCP schemes, provide more accu-
rate values in comparison to GFORCE, and especially to LF scheme, for
the same grid density. In comparison to the previous example, GFORCE
scheme here behaves better due to smaller differences between the ex-
ternal and internal eigenvalues. Same as in the previous example, N-Roe
and A-Roe scheme give almost identical results. The results are in agree-
ment with (Castro et al., 2010), where the same accuracy was found for
these numerical schemes.

Table 2 shows CPU times in (s) for different grid densities. Again,
the LF and GFORCE schemes have similar CPU times, which are several
times lower than the N-Roe and PVM-Roe schemes, while the A-Roe
scheme shows CPU times that are much closer to the GFORCE, almost
identical to the IFCP scheme and significantly faster than the N-Roe (up
to 3.8 times) and the PVM-Roe schemes (up to 83%).

To further evaluate the efficiency of each scheme a CPU time vs.
normalized root square error Eq. (73) is given in Fig. 6. The results show
that A-Roe is better than the LF, GFORCE, N-Roe, and PVM-Roe schemes,
and almost identical to the IFCP scheme, when efficiency is considered;
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Table 2
Test II: CPU times in (s) for different grid sizes obtained by LF, GFORCE,
N-Roe, PVM-Roe, IFCP, and A-Roe schemes (best of 5 runs).

No. of points LF GFORCE N-Roe PVM-Roe IFCP A-Roe
100 0.05 0.06 0.12 0.08 0.06 0.06
200 0.11 0.13 0.36 0.21 0.15 0.16
400 0.29 0.36 1.33 0.63 0.41 0.42
800 0.88 1.16 4.73 2.18 1.30 1.30
1600 2.98 4.08 18.39 7.97 4.51 4.53
3200 11.14  15.56 72.40 30.73 16.95 16.78

it has the same accuracy as N-Roe method, with CPU times closer to the
GFORCE and IFCP scheme.

3.4. Test IIl: Wet-dry front over a smooth bottom topography

A case of a two-layer flow through a rectangular channel with non-
flat bottom topography is considered next. This test was introduced by
Fernandez-Nieto et al. (2011) to verify the well-balanced properties of
numerical schemes when a non-flat bed and wet-dry fronts appear.

The spatial domain is set to [0, 10], and the bed elevation is defined
by the following function:

bix) = 0.0 m, if x<5m 76)
(x) = % m, otherwise (

whereas, the initial condition is defined by:

0.6 m, if 45<x<5m

0.0 m, if x>7m
(. 0) = 0.2 m - b(x) : ’ a7

max otherwise

0.0 m

hy(x,0) = 1.0 m — Ay (x, 0) — b(x) (78)
u(x,0)=0.0m s~ uy(x,0)=00ms"! (79)

Non-reflective conditions are imposed at the boundaries, the relative
density ratio is set to r = 0.99, spatial grid size is set to Ax = 1/20m, and
CFL = 0.8. Only the N-Roe and A-Roe schemes are compared, both with
an implemented numerical technique for dealing with wet-dry fronts
(Castro et al., 2005). The wet-dry parameter is set to e = 107> m. The
reference solution is computed using the N-Roe scheme and a dense grid
of 3200 points. The CPU time of the complete simulation has been found
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to be 25.4 s for the N-Roe scheme, and 10.7 s for the proposed A-Roe
scheme.

Fig. 7 shows the evolution of the interface obtained by the N-Roe and
A-Roe scheme, compared to the reference solution. Both the N-Roe and
A-Roe scheme produce almost identical results at every time step, and
both schemes successfully deal with wet-dry fronts. These results are in
agreement with those presented by Fernandez-Nieto et al. (2011).

3.5. Test IV: A Riemann problem with a bottom step

Another case of a two-layer flow through a rectangular channel with
non-flat bottom topography is considered. This test was introduced by
Fernandez-Nieto et al. (2011) to examine how numerical schemes deal
with bottom steps in the very extreme circumstances for which the SWE
theory may cease to be applicable.

The spatial domain is set to [0, 10], and the bed elevation is defined
by a single bottom step:

b(x)z{O.Sm, if x<5m

0.0 m, otherwise (80)
whereas the initial condition is defined by:

02m, if x<5m
= ’ =1. _ —
ha(x,0) {0.1 m, otherwise (. 0) 3 m = hy(x, 0) = b(x)
(81)
u(x,0)=00m s~ uy(x,0)=0.1ms"! (82)

Non-reflective conditions are imposed at the boundaries, the relative
density ratio is set to r = 0.98, spatial grid size is set to Ax = 1/20m, and
CFL =0.7. Again, only the N-Roe and A-Roe schemes are compared
here, both with an implemented numerical technique for wet-dry fronts
(Castro et al., 2005) to deal with an emerging bottom step. The reference
solution is computed using the N-Roe scheme and a dense grid of 3200
points. The CPU time of the complete simulation has been found to be
0.89 s for the N-Roe scheme, and 0.33 s for the proposed A-Roe scheme.

Fig. 8 shows the interface depth and bottom layer velocity at r = 2.0
s. The A-Roe and N-Roe scheme produce very similar results, without
any appearance of negative depths. The position and propagation veloc-
ity of the downstream wave, are in agreement with values obtained by
Ferndndez-Nieto et al. (2011). The only difference between the results
may be seen immediately downstream from the bed step, which is pre-
sumably the result of a different correction technique used to achieve a
well-balanced solution and deal with resonant problems in this partic-
ular test. Namely, the technique proposed by Castro et al. (2010) sets
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Fig. 9. Test V: Upper and lower layer depths and velocities obtained by N-Roe without hyperbolicity correction and A-Roe method with three different implemen-
tations of the hyperbolicity correction, at t = 0.2 and t = 2.0 s and Ax = 1/200 m.

the velocities at the interface to zero, whereas the hydrostatic recon-
struction (HR) used by Fernandez-Nieto et al. (2011) redefines the ge-
ometry source term at the discontinuous interface differently from the
technique proposed by Castro et al. (2005) applied here. Nevertheless,
the modification of the A-Roe by the HR technique is straightforward,
directly following the HR extension of the Roe scheme (see Castro et al.,
2007), because these two schemes differ only by the method in which
the eigenstructure is computed and the correction algorithm for the hy-
perbolicity loss. However, a detailed performance analysis of the A-Roe
scheme extended by HR is outside the scope of this manuscript.

3.6. Test V: Exchange flow with non-hyperbolic initial conditions and
r=0.99

The final three numerical tests demonstrate the performance of
the proposed hyperbolicity correction. The solutions are obtained
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by the N-Roe method using the real Jordan decomposition, as well
as using the A-Roe method with three different implementations
of the hyperbolicity correction: (i) approximate correction proposed
by Castro et al. (2011) (A-RoeC), (ii) iterative correction based
on the full discriminant of the characteristic polynomial prosed by
Sarno et al. (2017) (A-RoeS), and (iii) iterative correction based on the
discriminant of the resolvent cubic equation presented in Section 2.4,
which makes an integral part of the analytical solutions for the eigen-
values proposed here (A-Roe).

A two-layer exchange flow through a rectangular channel with flat
bottom topography is again considered. This particular test has been
proposed by Castro et al. (2011) to demonstrate how un-physical os-
cillations may occur and eventually blow-up the computation when hy-
perbolicity loss is not treated adequately. The initial free-surface is hori-
zontal and the interface is characterized by two steep fronts. The spatial
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computed by different implementations of the hyperbolicity correction.

domain is set to [—1, 1], and the initial condition is given by:

_ f04m, if |x|<05m _
hy(x,0) = { 05m  otherwise hy(x,0) = 1.0 m — hy(x,0)  (83)
u(x,0)=02ms™, u(x,00=—-03ms" (84)

Non-reflective conditions are imposed at the boundaries, and the rel-
ative density ratio is set to r = 0.99. All of the computations are per-
formed using a small grid size Ax =1/200 m and a fixed time step
At = 0.001 s, which gives CFL~0.7.

Fig. 9 shows the upper and lower layer depths and velocities at r = 0.2
s and at ¢ = 2.0 s. The results computed by the A-Roe method with the
proposed integrated hyperbolicity correction (A-Roe) are practically the
same as the results obtained using the iterative correction proposed by
Sarno et al. (2017) (A-RoeS) and the results using the approximate cor-
rection proposed by Castro et al. (2011) (A-RoeC). Note that the N-Roe
method without hyperbolicity correction does not change the initial ve-
locities in the layers, but as a consequence, strong oscillations appear at
the interface discontinuities. Shortly after r = 0.2 s the computation by
the N-Roe method blows-up. On the other hand, when either of three
hyperbolicity corrections is applied, the velocities are reduced shortly
after the start of the simulation, but the computation remains stable un-
til a steady-state is reached at t = 2.0 s. These findings are in agreement
with the results obtained by Castro et al. (2011), who found similar dif-
ferences between the Roe scheme that is based only on the real Jordan
decomposition, and the Roe scheme that additionally uses an approx-
imate hyperbolicity correction, as well as Sarno et al. (2017), who re-
peated this numerical test and showed that their iterative hyperbolicity
algorithm behaves very similarly.

To examine the behaviour of the proposed iterative correction al-
gorithm in more detail, Fig. 10 shows the computed maximum friction
FT% which is added to the system to prevent the hyperbolicity loss and
the appearance of complex eigenvalues. Since the initial conditions are
in a non-hyperbolic state, a relatively high F72* is added in the first time
step; namely 46.3 m? s=2 by both the A-Roe and the A-RoeS method, and
46.5m? s~2 by the approximate A-RoeC method. Just after a few time
steps F2X reduces to under 10~! m2 572, These results confirm that the
proposed A-Roe algorithm is almost identical to the iterative solution
given by Sarno et al. (2017) and very close to the approximate solution
given by Castro et al. (2011) when ra1.

The CPU time of the complete simulation has been found to be 5.14 s
for A-RoeC, 8.01 s for the iterative A-RoeS, and 6.4 s for the proposed A-
Roe scheme. Clearly, the proposed algorithm A-Roe is noticeably faster
than A-RoeS, because the discriminant of the resolvent cubic equation
is solved at each time step instead of the full discriminant of a quartic
equation.
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3.7. Test VI: Exchange flow with non-hyperbolic initial conditions and
r=0.3

Another case of a two-layer exchange flow through a rectangular
channel with flat bottom topography is now considered as proposed by
Sarno et al. (2017) to illustrate the advantages of the iterative hyperbol-
icity correction based on the discriminant of the characteristic polyno-
mial over an approximate treatment proposed by Castro et al. (2011).
The main idea here is to show that the approximate eigenvalues can pro-
duce not only less accurate results, but they can even completely change
the two-layer flow structure. The spatial domain is set to [-1, 1], and
the initial condition is given by:

_f04m, if |x|<05m B
hy(x,0) = { 05m  otherwise hy(x,0) = 1.0 m — b (x,0)  (85)
up(x,00)=1.0ms™", u(x,00=-3.0ms"! (86)

Non-reflective conditions are imposed at the boundaries, but in con-
trast to the previous example, the relative density ratio is set to be as
low as r = 0.3. The same numerical schemes are used as in the previous
example, with the same grid size and time step.

Fig. 11 shows the upper and lower layer depths and velocities at
t =0.25sand att = 5.0 s. First of all, strong oscillations are noticeable for
the N-Roe method without the hyperbolicity correction, which blows-
up after 1 = 0.25. The results computed by the A-Roe scheme are practi-
cally the same as the results computed by the A-RoeS scheme. However,
differences are noticeable between the two iterative schemes and the
approximate A-RoeC scheme, because of a different way in which the
additional friction is computed. As a consequence, the corrected veloc-
ities are significantly lower; at the end of the simulation, u; = —0.06
m s~! is computed by the approximate A-RoeC scheme, in comparison
to u; =+0.19 m s~! computed by the other two iterative schemes (A-
Roe and A-RoeS). Not only are velocities lower, but the A-RoeC scheme
changes the flow structure, which becomes unidirectional. On the other
hand, A-Roe and A-RoeS compute the optimal friction and preserve the
correct flow directions. The same behaviour of approximate and itera-
tive hyperbolicity correction was found by Sarno et al. (2017).

To assess the behaviour of three correction algorithms in more de-
tail, the temporal changes of F)2* are shown in Fig 12. As in the pre-
vious example, a relatively high F72* is added in the first time step,
namely 235.6m? s=2 by the A-Roe and A-RoeS scheme, and 318.3 m?
s~2 by the A-RoeC scheme with an approximate correction. Due to an
overestimated F,72* by the A-RoeC scheme, there is no need for further
corrections in the subsequent time steps. However, the flow structure
is compromised. On the other hand, F)** computed by the iterative
schemes A-Roe and A-RoeS, is reduced to under 10 m2 s=2 after the sec-
ond time step, and under 1 m? s=2 after t = 0.1 s. The results also confirm
that the proposed A-Roe scheme provides almost identical values as the
A-RoeS during the entire simulation.

The CPU time of the complete simulation has been found to be 21.3 s
for A-RoeC, 46.7 s for the iterative A-RoeS, and 36.2 s for the proposed
A-Roe scheme. Again, the results show that the proposed algorithm A-
Roe is noticeably faster than A-RoeS.

3.8. Test VII: Exchange flow over smooth bottom topography and with
hyperbolic initial conditions

A final case of a two-layer exchange flow through a rectangular
channel with non-flat smooth bottom topography is now considered to
carefully compare the influence of the A-Roe hyperbolicity correction
against frictionless solution (N-Roe scheme with a real Jordan decom-
position). In this example, a transcritical flow eventually develops with
an internal shock.

The spatial domain is set to [0, 10], and the bed elevation is defined
by the following function:

b(x) = 0.5exp (—(x — 5)%) (87)
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Fig. 11. Test VI: Upper and lower layer depths and velocities obtained by N-Roe without hyperbolicity correction and A-Roe method with three different implemen-
tations of the hyperbolicity correction, at = 0.25 s and 7 = 5.0 s for Ax = 1/200 m.

whereas, the initial condition is defined by:

hy(x,0) =08 m—b(x), hi(x,0)=12m— hy(x,0)— b(x) (88)

up(x,0)=015ms™", uy(x,0)=—-02ms"! (89)

In contrast to previous two examples, here we have hyperbolic initial
conditions. Non-reflective conditions are imposed at the boundaries, and
the relative density ratio is set to r = 0.98. All of the computations are
performed using a small grid size Ax = 1/100 m and CFL = 0.7.

Fig. 13 shows the evolution of the interface and lower layer velocity
at + =1, 10 and 30 s. The results computed by the A-Roe method with
the proposed hyperbolicity correction are almost identical to the N-Roe
scheme without the correction up until 7 = 1.0 s, when non-hyperbolic
conditions develop. Both schemes are able to compute the results until

200

steady-state conditions are reached at t = 30 s. However, N-Roe scheme
develops spurious oscillations which grow in time. The CPU time of the
complete simulation has been found to be 190 s for A-Roe, and 239 s
for the N-Roe scheme.

To examine the behaviour of the proposed iterative correction algo-
rithm in more detail, Fig. 14 shows the evolution of the discriminant
A, computed correction F22, as well as external and internal eigenval-
ues (waves), when The N-Roe scheme without correction and the A-Roe
scheme with hyperbolicity correction are applied.

Since the initial conditions are in a hyperbolic state, at the begin-
ning of the simulation, A is positive and of the same order for both
schemes (Fig. 14). Att = 1.0 s the velocity difference increases and a loss
of hyperbolicity occurs. From this point forward, the numerical scheme
without correction produces negative A, although real eigenvalues are
recovered through real Jordan decomposition. On the other hand, A-
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Roe with hyperbolicity correction maintains a positive discriminant by
applying extra friction of the order ~ 10~2 m? s~!.

Similarly, the external and internal eigenvalues are identical up to
t = 1.0 s for both schemes (Fig. 14). After this point, when a loss of hy-
perbolicity occurs, the A-Roe scheme produces different results from the
N-Roe scheme. Without correction, the external eigenvalues grow, and
the internal eigenvalues collapse to a single value which increases over
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time. On the other hand, hyperbolicity correction implemented in the A-
Roe scheme maintains constant external wave velocities, and, although
it appears that double internal eigenvalues are also present here, the
correction algorithm actually preserves some small difference between
them (due to the fact that A is always larger than zero).

4. Conclusion

In this study, a new implementation of the Roe scheme for solving
two-layer shallow-water equations has been introduced. The proposed
method is based on an analytical formulation for the eigenstructure of
the quasi-Jacobian matrix. This analytical expression is derived from
the explicit Ferrari’s solution to the characteristic polynomial, which is a
significantly faster alternative to numerical eigensolvers. The analysis of
the accuracy and computational speed of the closed-form quartic solver,
presented in this paper, suggests that it can be considered as reliable as
numerical eigenstructure solvers and up to 20 times faster.

The efficiency of the proposed A-Roe scheme was also examined in
terms of its accuracy and computational speed and compared to the Roe
scheme in which the viscosity matrix is computed numerically (N-Roe),
two incomplete Riemann solvers (Lax-Friedrich and GFORCE), as well as
two PVM schemes (PVM-Roe and IFCP). For a fixed computational grid
(both in space and time), the proposed A-Roe scheme is up to 4 times
faster than the N-Roe scheme, while maintaining the same accuracy of
the solution. The A-Roe scheme is also faster than the PVM-Roe scheme
(up to 83%). In comparison to the LF and GFORCE, the A-Roe scheme

t=1.00s
0.0
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-02- =

-0.3

uz (ms™)

-0.4
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Fig. 13. Test VII: Evolution of the interface and lower layer velocities obtained by N-Roe without hyperbolicity correction and A-Roe with hyperbolicity correction,

att=1,10and 30 s, and Ax = 1/100 m.
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is somewhat computationally slower (30-60%), but significantly more
accurate. When compared to the IFCP scheme, the A-Roe is slightly more
accurate with very similar computational speeds.

In addition to its computational speed, a significant advantage of
the A-Roe method is an integrated correction algorithm for keeping the
solutions of two-layer shallow-water equations inside the hyperbolic do-
main. It ensures that only real eigenvalues are considered in the process
of the Roe linearisation. The iterative algorithm uses the Illinois solver
and is based on the numerical treatment for the loss of hyperbolicity pro-
posed by Sarno et al. (2017), which in contrast to Castro et al. (2012) is
applicable for any density ratio. The only difference is that the hyper-
bolicity loss prediction and correction are based on the sign of the dis-
criminant of a resolvent cubic equation and that both actions are imple-
mented at the intermediate step when the eigenstructure is calculated.
Numerical tests of exchange flow show that the proposed algorithm is
as accurate as the iterative approach by Sarno et al. (2017) regardless
of the density ratio, but requires 25-30% less computational time. The
approximate algorithm by Castro et al. (2012) is 25-60% faster than the
proposed one; however, in the case of small density ratios it may fail to
preserve the exchange flow structure and produce unphysical results.

To conclude, the A-Roe scheme proves to be an efficient alternative
to a numerical implementation of the Roe scheme tested here for two-
layer shallow-water flows; it is as accurate but computationally much
faster. The proposed scheme gives more precise results for all values of
r and therefore it has a wider range of possible applications in compari-
son to approximate expressions. The efficiency of the proposed scheme
should not depend on a specific problem and it should increase with the
number of cells. Although the A-Roe method has been tested here only
for two-layer shallow-water flows, it can easily be applied to some other
non-conservative hyperbolic systems defined by four coupled partial dif-

nt,
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ferential equations, such as two-phase fluids. Furthermore, the extension
to two-dimensional problems or higher-order schemes is straightforward
following the same approach as for any Roe scheme.
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Appendix A. Analytic solution to the eigenstructure
A.1. Solution to a quartic equation

Let us consider a general normalized 4th order polynomial equation
(quartic)

raxd +bx>+ex+d=0. (A.1)

To find the analytical solution to roots of Eq. (A.1), first the cubic term
x3 is eliminated and the general polynomial is converted into a so-
called depressed quartic by a change of variables. Following Ferrari’s
method (Abramowitz and Stegun, 1965), a substitution x = y —a/4 is
introduced, which gives a depressed polynomial

VP +qy+r=0, (A2)
where

p=b—6(§)2, (A3)
q=c—2b(§)+8(§)3, (A4)
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a a\? a\*
r=d=c(§)+o(5) -3(5) (A-3)
The depressed polynomial can be rewritten as
2 PV L P
(P+E) =+ T -r (A6)

Next, expression 2zy? + zp + z2 is added to both sides of Eq. (A.6), which
after some regrouping gives

(+

When z is chosen to be any non-zero root 2, of the so-called resolvent
cubic equation

»
——r.
4

p

2
§+z> =22y —qy+ 22 +zp+ (A7)

823 +8pz% + (2p> — 8r)z—¢*> =0, (A.8)

the right-hand side of Eq. (A.7) can be written as a perfect square; there-
fore, Eq. (A.7) becomes
)2

2
Lon) = (WE-

And finally, Eq. (A.9) can be written as a factorized quadratic equation

)-o

(A.10)

q
2z

(y2 + ; (A.9)

q

24/2z,

q

24/2z

<y2+\/220y+§+zo— ><y2—\/220y+§+zo+

which is easily solved by a quadratic formula.
Therefore, the solutions to the roots of the general quartic
Eq. (A.1) are given by

a 1 2q
=8 2\ zg+ |- 2p 4225 : Al
X2 7 3 V%t3 <P Zg \/2_z0> ( )

a1 1 2
=——+ =12zp+ =1|—| 2p+2z5 + . A.12
X34 7T VZ0t; <P Zg \/2_20> ( )

For a general normalized 3rd order polynomial equation (cubic)
B +ax?+px+y=0, (A.13)

a real solution is given by Cardano’s formula (Abramowitz and Ste-
gun, 1965)

Xg = §; +s2—§, (A.14)
with
sy = R+ VR + 05, (A.15)
sy =V R- VR + 05, (A.16)
where

_ 2
o=« (A.17)

9

_ 9.3
R= w. (A.18)
54
Note that Eq. (A.14) may be also written as either x, = s; — SQ - % or
1

-2 _«

s 3’
s or s, needs to be computed. Furthermore, if O = 0 then we have to
choose s; if R>0 and s, if R<0 to get non-zero value. Therefore, the

solution to the resolvent cubic Eq. (A.8) is given as

_._9
zg=85—— —

s 3

Xo = 85 which is computationally more convenient since only

P

(A.19)
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where
3 .
s= \/R + sign(R)V R? + 03, (A.20)
3(p2/4—r) —p? —p? -
0= W /4=n—-p" _-b 12d+3ac, (A21)
9 36
R W[4 +2742/8 = 2p) _ 27a’d — 9abe +2b° — T2bd + 27¢?

54 432

(A.22)

To eliminate redundant divisions and optimize computation of
Egs. (A.11) and (A.12), the root of the resolvent cubic equation is ex-
pressed via

2= (s+20 (A23)
0= 3 K D, .
where
3| A +sign(A;)y /A2 —4A3
S =6s= > , (A24)
Ay = =360 = b + 12d — 3ac, (A.25)
A, = 432R = 27a*d — 9abc + 2b° — 72bd + 27> (A.26)

Note that A? - 4A3 = —gDcub,-c = —27D 44r4ie» Which is a much sim-
pler expression for the discriminant of the resolvent cubic equation
D, and especially the discriminant of the quartic equation D4,
given by Eq. (56). Therefore, if A% - 4Ag < 0, three resolvent cubic roots
are all real and the quartic roots are either all complex or all real. In
this case, Eq. (A.23) can be solved trigonometrically (Lambert, 1906),
which is computationally faster than computing the cube root required

in Eq. (A.24):

2= (VBoeos S -5). (27
where
¢ = arccos (A.28)

2

= |
VA0

To summarize, the real solution to the quartic equation can be sim-
plified as follows:

a —_ B
-3 = \/E— -A-Z=F \/_E
Xip= , (A.29)
’ 2
a _ B
-5 % \/E-f— -A-ZF \/_E
X34 = , (A.30)
’ 2
where
1 ¢
Z=2zy= 3 2\/A0cos§—A s (A31)
with
2
A=2p=2b- 3%, (A32)
o3
B=2g=2c—ab+ T (A.33)
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A.2. Explicit solution to the inverse of the eigenvector matrix

Inverse of matrix K, whose columns are eigenvectors, is derived from

4 1 .
= adj(K), A.34
det(K) j(K) (A.34)
which, after some regrouping and simplifications, gives
K'=[k k k k) (A35)
with
K, = (c]2 - u%)&k + & 4 u% = 2u 6 + Ky clzék _i
i Sk Sk &’
(A.36)
k =1,.,4, where
4
Se= D A 2u, (A37)
j=Lj#k
4
Sk = Ajs (A.38)
J=Lj#k
4 4
K = . (A.39)
J=Lj#k i=1i#j k
4
G=J] &= (A.40)
Jj=Lj#k
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